& Network Measurement

Direct and indirect network measurement techniques provide essential information for
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@ Network Measurement: Limitations and Challenges
- Feasibility and Complexity of the measurement process

- Exploding Traffic Volume

- Limited Measurement and/or Processing Resources

- High computational complexity in large-scale networks AR
- Limited performance accuracy (@3>
- Sensitivity to noise and failures = 3
/
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& iISTAMP: Formulation

Desigh the aggregation matrix A which provides both optimal aggregated and per-flow

| TCAM I

direct measurements
Definitions:

- X: An n X 1 vector of unknown flows denoted
A
-A = ng]: An mX n binary matrix aggregation matrix
K
-Y: An mX 1 vector of observations
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& iISTAMP: Framework
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iISTAMP leverages OpenFlow to dynamically partition the TCAM entries of a switch/router
into two parts for optimal aggregation and direct flow sampling. iISTAMP has three main

components: I
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1 An Optimal aggregation technique to produce a
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J An intelligent sampling algorithm to sample the

most informative traffic flows

J An efficient compressive sensing inference

technique to accurately estimate highly fluctuated

flows over time/space
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& ISTAMP: Optimal Aggregation & Per-Flow Measurement Matrix Design

Measurement matrix design depends on the size of matrix and estimation technique

J Optimal Compressive Sensing Flow Aggregation
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J Optimal Sampling and Exponential Aggregation Technique

Algorithm Modified Upper Confidence Bound (MUCB)

Input: Time horizon 7. and parameter c.
Output: At each epoch ¢, the set of sorted indicies of incoming
flows (I%) in descending order where I* = I, | J I},
while True do
- Set t = 1, measure all n flows {x;}7_; using all T" entries
of TCAM over (%1 epochs, and set . = n.
while ¢ < T, do

| SNET _ 2n(t
- Compute flow indicies [ _? = aZj + 2ln(te)

ti(te)
7 =1,....n where x; is the average flow size for j “ flow,
ti(t) is the number of times flow 7 has been measured upto
time t. and t. 1s the overall number of measurements done
SO far.
- Sort the set I* and report indicies in descending order as
I'=1,I _;;.
- Allocate £ measurement entries to the £ flows with indicies
in /; and measure them.
-t=t+ 1, te =t + K.

end while
end while

for all flows

Algorithm 2 Exponential Aggregation Technique (EAT)

Input: Aggregation parameters p and 0.
Output: Aggregation Matrix Aj .
Initialization: Set i = 0 and A}, = Oy n.
fori=mtol do

-r = Lo(-n — I{)%W + 1

for j=1tor do

- AL (i, I (ic + §)) = 1

end for
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