
1

QUARTERLY TECHNICAL PROGRESS REPORT

Shakedown Experimentations and Prototype
Services on Scalable, Agile, Robust, and Secure Multi-

Domain Software Defined Networks

Report Period: Apr. 1, 2015 – Jun. 30, 2015

Technical Point of Contact

Professor Chen-Nee Chuah, Professor Matt Bishop, Professor S. J. Ben Yoo
University of California

Dept. of Electrical and Computer Engineering
Kemper Hall, Rm 3179
Davis, California 95616

Tel: 530-752-7063
Fax: 530-752-8428

E-mail: chuah@ucdavis.edu, bishop@ucdavis.edu, sbyoo@ucdavis.edu

	

	

	

2

Table	of	Contents	
I. Major Accomplishments ... 3

A. Milestones Achieved ... 3

B. Deliverables Made ... 3

II. Description of Work Performed During Last Quarter ... 3

A. Activities and findings ... 3

B. Project participants .. 12

C. Publications (individual and organizational) ... 12

D. Outreach activities ... 12

E. Collaborations .. 12

F. Other Contributions and Future Plans ... 12

3

a) Major Accomplishments

1. Milestones Achieved

Table 1 summarizes the status of completion for the different milestones indicated in Year 2

period. This report discusses in particular the technical progress related to tasks and milestones for
the period April 1, 2015 – June 30, 2015.

Table 1. List of milestones achieved with status of completion.

Task Milestones Status
1 Demonstration of how close-loop analysis,

programmable measurement, and traffic
inferences using OpenFlow can be applied to
detect distributed/global icebergs. Multiple

OpenFlow controllers will run iSTAMP modules
to adapt the traffic measurement rules on

OpenFlow switches dynamically.

COMPLETED

2 Use GENI resources including GENI OpenFlow
switches and virtual machines for the demo

COMPLETED

The following sections will describe in details the studies and finding related to the tasks

mentioned above. In particular, we focused on applying SDN in the application of network
tomography and global iceberg detection. The following sections will describe in details the
studies and finds related to each of the activities above.

2. Deliverables Made

The deliverable include:
3. A poster has been presented in GEC’23, showing the project progress and our demos.
4. A live demo showing software-defined networking enabled traffic matrix estimation and

global iceberg detection on GENI testbed has been successfully presented in GEC’23.

b) Description of Work Performed During Last Quarter
1. Activities and findings

We proposed a new framework for network tomography which adopted software-defined

networking (SDN) enabled online learning. In our proposed SDN measurement framework as
shown in Figure 1, multiple SDN switches are distributed in the network. A centralized controller
could communicate with all of the SDN switches. In control plane, the controller could: 1) fetch
flow statistics from SDN switches, 2) update the measurement rules online. The centralized
controller has a network-wide view of the global routing. We consider the case where these SDN
switches perform both packet forwarding as well as measurement tasks, so that we could avoid
additional measurement hardware deployed on top of traditional routers to reduce the
implementation cost and complexity in practical cases. Thus for each SDN switch, part of the
TCAM entries are pre-populated by local routing rules and can not be altered in order to preserve
routing. In this way, we could get the aggregated flow statistics from these routing entries for free.

4

Figure 1 Overview of SDN-based network

Besides routing entries, a handful of TCAMs are available to implement measurement rules.
To improve estimation accuracy, new measurement rules can be generated by offloading subsets
of flows matching the original routing rules. However due to the limitation of the current
implementation of TCAMs (only flows with source/destination IPs belonging to the same IP
subsets can be aggregated in one TCAM entry), these subsets of flows can not be arbitrarily
selected. In our framework, we implement per-flow measurements in the available TCAMs to
directly measure the most important flows (i.e. flows with largest flow size). The idea is that 1)
directly measuring the most important flows could provide higher estimation accuracy
improvement compared to measuring randomly selected flows. 2) per-flow measurements are
feasible in practical implementation and routing function is easy to be preserved.

To find the most important flows, we apply an intelligent learning algorithm (MUCB) to
rank all the flows based on the historical flow size information and estimate the location of the
large flows in the next time interval. By utilizing the real-time reconfiguration feasibility provided
by SDN, the controller will update the measurement rules periodically to track the most important
flows. However, since the measurement resources are distributed in the network, it need to find a
feasible solution to allocate “flow measurement rules” to the distributed SDN switches with
available measuring TCAMs. We proposed two heuristic solutions for the “flow-measurement-
rules allocation” problem.

The first algorithm is called “LastHop”, whose pseudo code is shown in Figure 2. The
second algorithm is called “Greedy”, whose pseudo code is shown in Figure 3. In both heuristic
solutions, we will first rank all the flows in the network in decreasing order of “importance”
estimated by MUCB and then start fill the available TCAMs with measuring rules for flows with
higher “importance”. Lasthop algorithm will first try to measure a selected flow at the last SDN
switch before reaching destination. If there is no TCAMs available at the current, the algorithm
will then check if the prior hop is feasible to measure it. Continue this process until we find a spot
to install the per-flow measurement for the selected flow or no switches are available to measure
it. The “Lasthop” algorithm will exit once all the available measuring entries are filled up with
measuring rules. On the other hand, Greedy algorithm will list all the available SDN switches that
a selected flow goes through in its flow path. It will install the measurement rule at the switch
which has the most number of available TCAM entries up-to-date.

5

To summarize, the centralized controller will: 1) fetch flow statistics (both routing statistics
and measurement statistics) periodically, 2) estimate flow size for all the flows in the network, 3)
apply MUCB algorithm to sample the most important flows to be directly measured in the next
time interval, 4) run heuristic algorithms to find a feasible solution to allocate “flow-measurement
rules” to the distributed SDN switches with available TCAM entries. 5) update the measurement
rules according to the output of step 4).

Figure 2 Pseudo code of Lasthop Algorithm

Figure 3 Pseudo code of Greedy Algorithm

In 23rd GENI Engineering Conference (GEC’23) we demonstrated an implementation of

our network measurement framework on GENI testbed as the following:

6

(1) Practical Implementation and demo

We demonstrated an implementation of our network measurement framework on GENI
testbed. We simulated our framework using GEANT network topology, which has 23 switches and
37 links. We used the jFed, a Java-based slice reservation tool, to reserve our topology. We
created 46 slices and 60 links from Kettering InstaGENI aggregate as shown in Figure 4. 23 slices
are used as traffic generators to inject traffic flows into our simulator. We used real traffic traces
of GENAT network in our simulation. Open vSwitch was installed and configured on the other 23
slices to simulate the function of OpenFlow switches. Another VM with a public IP address was
reserved to run our OpenFlow controller.

In the demo, network flow generators are used to generate network flows according to the
flow trace file collected in GEANT network. The generated flows are injected into the SDN
switches. The SDN switches forward and count the flows according to the flow rules installed in
the flow table, and the SDN switches also reply to the flow statistics request sent by the
centralized traffic measurement controller. The traffic measurement controller periodically get
flow statistics from the SDN switches, and estimate individual flow sizes at each time interval
using those statistics. An learning algorithm is running at the controller side to predict the
locations of large flows for the next interval. The controller then runs “Greedy” or “LastHop”
algorithm to allocate those selected flow-measurement rules to SDN switches, and update the flow
tables at switch side accordingly. The block diagram in Figure 5 shows the interactions between
the centralized controller and SDN switches in detail.

Figure 4 The Overview of GEANT topology on GENI testbed

7

Figure 5 Block diagram of the interactions between controller and SDN switches

The GUI of the demo is shown in Figure 6. There are two windows in the GUI. In the first

window, plot2 shows the estimated flow sizes (blue) and real flow sizes (red) of all flows in the
network. Plot1 tracks a particular flow (both estimated flow size in solid blue line and real flow
size in dashed red line) in real time. Performance metrics, NMSE and HH detection, are also
shown in this window. The second window shows the Hierarchical Heavy Hitter (HHH) detection
in real time. To detect HHH, we build a prefix tree of source IP addresses for each destination as
shown in Figure 7. Nodes shaded with green color are true HHHs which are detected by our
framework. Nodes shaded with blue color are true HHs which are detected by our framework.
Nodes shaded with red color are false alarms. The user can select which destination to monitor on
the panel by using the drop-down list below.

8

Figure 6 The GUI of the demo (window #1)

Figure 7 The GUI of the demo (window #2)

(2) Simulation Result

We evaluate our framework using the metric NMSE, normalized mean square error, which is

a widely used performance metric for measuring the accuracy of traffic matrix estimation. We also
evaluated the performance of our framework in the application of Heavy Hitter (HH) detection and
Hierarchical Heavy Hitter (HHH) detection.

Figure 6 shows the NMSE of different methods when the number of available measuring
entries of each switch varies. The “random” method will randomly sample flows for direct
measurements. As we can see, compared to the “random” method, where flows are randomly

9

selected for direct measurements, the two algorithms which keep tracking of the largest flows with
learning provide a smaller NMSE and thus a higher estimation accuracy. Greedy algorithm
outperforms the LastHop algorithm when the number of available measuring entries is small.

A flow is considered to be a Heavy Hitter if the flow size is larger than a threshold. To justify
the effectiveness of our framework for HH detection, the average probability of detection (Pd

HH)
and the average probability of false alarm (Pfa

HH) are used. Figure 7 and Figure 8 show that we
could get a higher detection rate and a lower false alarm rate when equipped with the learning
feasibility provided by SDN compared to the random sampling.

To detect Hierarchical Heavy Hitters (HHHs), we build a prefix tree of source IPs for each
destination. An illustrative example is shown in Figure 5. An aggregated prefix node is considered
to be an HHH if its aggregated flow size, excluding the flow size of its HHH descendants, is larger
than a threshold. In this example, the threshold is set to 10. Nodes in double circles are HHs and
nodes in shaded circles are HHHs. We adopt the two performance metric, recall and precision to
quantify the performance of our framework. Recall is defined as the total number of true HHHs
detected over the real number of HHHs. Precision is defined as the total number of true HHHs
detected over the total number of HHHs reported. Figure 9 and Figure 10 show that a much higher
recall and a much higher precision could be achieved when applying SDN-enabled learning.
Compare the two resource allocation algorithm, we could see that Greedy is better than LastHop.
This is reasonable since we choose wiser in allocating flow-measurement rules to available
switches.

Figure 6 An illustrative example of an IP prefix tree

10

Figure 6 NMSE in GEANT when Kj varies

Figure 7 Probability of detection when Kj varies

11

Figure 8 Probability of false alarm when Kj varies

Figure 9 Average Recall when Kj varies

12

Figure 10 average Precision when Kj varies

2. Project participants

Prof. S. J. Ben Yoo Heterogeneous Multi-Domain Network Testbed UC Davis, PI
Prof. Matt Bishop Security in Scalable Programmable Networks UC Davis, Co-PI
Prof. Chen-Nee Chuah Monitoring in Scalable Software Defined Networks UC Davis, Co-PI
Ms. Chang Liu Network measurement framework and demo UC Davis
Ms. Shu Ming Peng Mininet UC Davis
Mr. Mehdi Malboubi Network measurement framework UC Davis

3. Publications (individual and organizational)
[1] M. Malboubi, L. Wang, C-N. Chuah, and P. Sharma, "Intelligent SDN based Traffic

(de)Aggregation and Measurement Paradigm (iSTAMP)," IEEE INFOCOM, April/May
2014

4. Outreach activities
N/A

5. Collaborations
N/A

6. Other Contributions and Future Plans
N/A

