QUARTERLY TECHNICAL PROGRESS REPORT

Shakedown Experimentations and Prototype
Services on Scalable, Agile, Robust, and Secure Multi-
Domain Software Defined Networks

Report Period: Apr. 1, 2014 — Jun. 30, 2014

Technical Point of Contact
Professor S. J. Ben Yoo
University of California

Dept. of Electrical and Computer Engineering
Kemper Hall, Rm 3179
Davis, California 95616
Tel: 530-752-7063
Fax: 530-752-8428
E-mail: sbyoo@ucdavis.edu

Contents
L.

A.
B.

II.

T Y 0w

Major ACCOMPLISRHIMENTSoeviiieiieeiieiie ettt e eaee e 3
Milestones ACHIEVEAcecuiieiuiiiiiiieiie ettt eae e e et etaeeaeeeaeeens 3
Deliverables Made.........ceeveviieriieiiciecieseeie ettt 4

Description of Work Performed During Last Quarter..........ccccceveevveecireceescieenenenns 4
Activities and fINAINGS........cccveeierieiieieeie ettt e 4
Project partiCiPantsccvereerieeieeeeseeseese ettt ettt et neeeenas 17
Publications (individual and organizational)..........c.ccecveriiieniiieniieeniiienieeeieenne, 17
OULIEaCh ACTIVILIESveuviniitiriiiieeieet ettt 17
COllaDOTAIONS. ... vieeetieeiiieitieeie et ettt et e e tre et e eteesteeesbeesnbeessbeesnseesseesseennenn 17
Other Contributions and Future PIanscccceceveveninininenincnnneeeeeees 18

I. Major Accomplishments
A. Milestones Achieved

Table 1 summarizes the status of completion for the different milestones indicated in Year 1
period. This report discusses in particular the technical progress related to tasks and milestones
highlighted in yellow for the period April 1, 2014 — June 30, 2014.

Table 1. List of milestones achieved with status of completion.

Task (GEC) Milestones Status

1 (GEC19) Deploy two-domain OpenFlow control COMPLETED
framework in UC Davis campus and conduct a

two-domain experiment between Davis campus
network domain and another network domain

2 (GEC19) Showcase the two-domain control COMPLETED
framework and experiment results in GEC 19.
Include a demo of the experiment running at the
UC Davis campus

3 (GEC19) Initial results/deployment plan for COMPLETED
running this two-domain experiment in GENI
4 (GEC19) Decide which Big Data application is COMPLETED

going to be used and have a detailed plan for
incorporating the application to the multi-domain
control experiment

5 (GEC19) Present a plan on how the multi- COMPLETED
domain control framework will be connected to
GENI once the UC Davis rack is up

6 (GEC19) Present a plan on how to expand COMPLETED
control plane to incorporate more than two
domains
7 (GEC19) Provide feedback to the community COMPLETED
8 (GEC20) Live demonstration of Experiment A COMPLETED
running in GENI
9 (GEC20) Live demonstration multi-domain COMPLETED
experiment using more than two domains
10 (GEC20) Live demonstration of experiment COMPLETED
showcasing GENI multi-domain capabilities and
limitations
11 (GEC20) Incorporated a Big Data application COMPLETED
preferably from another domain science
12 (GEC20) Preliminary results from the second COMPLETED
experiment
13 (GEC20) Documentation on how to repeat the COMPLETED
experiment in GENI
14 (GEC20) Provide feedback to the community COMPLETED

The following sections will describe in details the studies and findings related to the tasks
mentioned above. In particular, during the recent three months of the project, our research team
focused on the following activities:

1. Application-aware big data over reconfigurable optical networks
2. Dynamic WiFi handover
3. Broker-based multi-domain UCD-CENIC(COTN)-ESNet software-defined networks

The following sections will describe in details the studies and findings related to each of the
activities above.

B. Deliverables Made
The deliverables include:
1. A poster file has been presented in GEC’20, showing the project progress and our demos.

2. Three live demos entitled “application-aware big data demo”, “WiFi handover demo” and
“multi-domain UCD-COTN-ESNet demo” have been presented in GEC’20.

II. Description of Work Performed During Last Quarter
A. Activities and findings

i) Application-aware big data over reconfigurable optical networks

Figure 1 shows the OpenFlow-based SDN architecture for optical networks with
reconfigurable optical switching nodes. An intelligent OpenFlow-based controller can be deployed
to support multi-thread processing and can dynamically perform routing and wavelength
assignment algorithms through its path computation element (PCE) module. The PCE can get the
network information from the traffic engineering database (TED) for the path computation, and
after a successful path computation, the PCE can notify the OpenFlow engine to send the extended
OpenFlow messages to the corresponding OpenFlow agents for path provisioning.

To support optical networking by using an OpenFlow-based control plane, all the network
elements (NEs) in the optical networking are required to be extended with the OpenFlow
capability. This can be achieved by introducing an OpenFlow agent on top of each NE, as shown
in Figure 1. A centralized OpenFlow controller (e.g. NOX) can communicate with all the
OpenFlow agents through the extended OpenFlow protocol. The OpenFlow protocol extensions
are summarized below:

1. The Feature Reply message is extended to report the new features of an optical switching
nodes (e.g., switching capability, available wavelengths, etc.) to the NOX controller;

2. The Packet In message is extended to carry the required bandwidth of each incoming flow;

3. The Flow Mod message is extended to carry the path computation results from the NOX,
including input/output ports, wavelengths, etc. for each OpenFlow agent to control the
underlying optical switching node.

OpenFlow

Thread 1]
Controller

Thread 2 (@e

Thread N

Main Thread Thread Pool

Asynchronous I/O

Polatis
Switch
Control
i Polatis

Figure 1 OpenFlow control framework for optical switches

Request Manager

]@iaa

l WIFFSNFNNINE00EE

W

To demonstrate the importance of optical technologies for functionalities that go beyond the
point-to-point transmission, in case of latency-sensitive big-data application, we setup an
application-driven Big Data demo involving the optical transmission and switching of high
bandwidth uncompressed 4k real-time video signals under a unified OpenFlow-SDN control
plane. The demo, depicted in Figure 2, spanned across three rooms located in two different
buildings in our UC Davis Campus. The rooms and buildings were interconnected through a
certain number of single mode fiber (SMF) strands. The distance between the two buildings is
about one kilometer.

One 4k camera and one 4k monitor were placed in Kemper Hall building. A 32-port
OpenFlow-controlled optical circuit switch, as detailed above, was placed in the same building but
in a different room and specifically in the building distribution facility (BDF). Two strands of
fibers connected the BDF with the other room. Two monitors and a second camera were placed in
the conference center ballroom where the GEC20 demo session took place. Three fiber strands
connected the BDF with the conference ball-room. The whole system represented a high
bandwidth, real-time video conference system for latency-sensitive application since no Video
compression and decompression was involved. The bandwidth of the 4k signals used was 12 Gb/s.
These 12 Gb/s signals generated by the two cameras were output from the cameras through four
3G-SDI interfaces, each one carrying a 3Gb/s signal. A media converter was responsible for
converting the four 3G-SDI signals in the optical domain. The output of the media converter was
composed by four wavelengths, each one modulated by one of the four 3G-SDI signals (see Figure
3). The media converter was connected then to a fiber patch panel to launch the optical signal into
the fiber strand connecting with the BDF. In the BDF the signal was switched in the optical
domain (no O/E/O conversion) in order to reach one or both 4k monitors in the ballroom of the
conference center. For each 4k monitor in the ballroom, an optical to 3G-SDI converter was used
to send the four 3G-SDI signals to the 4k monitor. Note that, the optical switch was remotely
controlled from the conference center through the public internet network.

Conference Center
Kemper 2230] Kemper BDF ST

- \
4 h

32-port Polatis
switch

. A

T

Figure 2. Application-aware Big Data 4k demo over dark fiber campus infrastructure. Multicast scenario is shown.

Figure 4 shows four different quadrants composing the 4k images. There images were taken
during the testing phase of the demo. Each of the four quadrant is carried by one of the 3G-SDI

signal generated by the 4k camera.

-

+4dBm total output power
+ 1512.86 nm

* 1531.64 nm

¢ 1553.72 nm

+ 1569.8 nm

Figure 3. 3G-SDI to Optical Media converter and related output observed on an optical spectrum analyzer.

R
Y ¢
e e =g “ ‘

..

| L
H||

[||1 (]
laill

L e TRt

Figure 4. Four different quadrants composing the 4k images.

The demonstration above was the first demonstration of big-data application over a
reconfigurable optical network in UCD campus using the ground fibers. Next steps could involve
for instance the possibility to adjust the bandwidth and resolution of the transmitted video in case
of a heterogeneous network where the signal could travel through wired and wireless networks,
each one with different bandwidth requirements.

ii) Dynamic WiFi handover

In this WIFI seamless handover demo, we set up an OpenFlow-wireless network testbed and
conducted some OpenFlow-wireless network experiments. The testbed includes one OpenFlow-
enabled switch (HP 2920) and three wireless routers (TP-LINK WL-TR1043ND). We have
upgraded the routers’ firmware to OpenWrt, and modified some modules and services of OpenWrt
to support OpenFlow 1.0 protocol. The experiment network topology is depicted in Figure 5.

—— OF Control plane connection OF Controller
—— Data plane connection
= == WIiFi Wireless connection

OF Switch | — o

‘-“_-/__'_-—-"’-—H’q"\ Server PC

OF WiFi - i OF WiFi-2 | | OF WiFi-3
Mobile Dmncp l; I;

Seamless handover (no service |nterruptmn from Server PC to Mobile Device)

Figure 5 The experimental network topology for the WiFi handover demo

In practice, we deploy one OpenFlow switch and three wireless routers in the Conference
Center of UC-Davis campus. Some desktop PCs are connected to OpenFlow switch, while some

laptops are connected to the wireless routers via WiFi connections. The OpenFlow controller in
the experiments is POX, which runs on a desktop PC and connected to a general purpose switch in
the network in a wired way, as shown in Figure 6.

Figure 6 Equipment implement in Conference Center for the WiFi handover demo

By deploying and configuring the POX and the switch correctly, the connection between the
controller and the switch is established as long as the corresponding services are available, as in
Figure 7.

C:\pox>python pox.py openflouw.of_01 --address=192.168.0.101 --port=6622 py
POX ©.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.
INFO:core:POX 0.2.8 (carp) is up.

Ready.

POX> INFO:openflow.of_01:[f0-92-1c-cb-33-¢c0l2 1] connected

POX>

Figure 7 Establishing connections between the controller and the switches for the WiFi handover demo

We have conducted the provisioning of flow table entries for the OpenFlow-enabled switch
and the OpenFlow-enabled wireless routers, to enable flow control based on flow tables.
Writing flow table entries to HP 2920 by POX:
msg = of.ofp_flow_mod()

msg.match.in_port =5

msg.actions.append(of.ofp_action_output(port=6))

msg.actions.append(of.ofp_action_output(port=7))

msg.actions.append(of.ofp_action_output(port=8))

core.openflow.connections[827460292391872L].send(msg)

msg = of.ofp_flow_mod()

msg.match.in_port =6

msg.actions.append(of.ofp_action_output(port=5))

core.openflow.connections[827460292391872L].send(msg)

msg = of.ofp_flow_mod()

msg.match.in_port =7

msg.actions.append(of.ofp_action_output(port=5))

core.openflow.connections[827460292391872L].send(msg)

msg = of.ofp_flow _mod()

msg.match.in_port =8

msg.actions.append(of.ofp_action_output(port=5))

core.openflow.connections[827460292391872L].send(msg)

Writing flow table entries to TL-WRI1043ND:

dpctl show tcp:127.0.0.1:6634

dpctl dump-flows tcp:127.0.0.1:6634

dpctl add-flow tcp:127.0.0.1:6634 idle timeout=0,in_port=1,actions=output:2

dpctl add-flow tcp:127.0.0.1:6634 idle_timeout=0,in_port=2,actions=output:1
To testify the seamless handover property, we conducted the following experiment:
1. Transfer a file from the server PC (using an originality application) to the laptop. Figure 8

is a snapshot indicating the packets captured by WireShark in server PC.

Fiten | icmp

Destination
192716¥. 0.204

59
:08:8F), Dst: L1 (oc:b7:)
162.168.1.104 (192.168.1.104), Dst: 192.168.0.107 (192.168.0.107)

Figure 8 The server PC transmitted packets to the Laptop

2. Laptop received the file (using an originality application) from the server PC. Figure
9(a)-(e) are snapshot indicating the packets captured by WireShark from laptop in different
situations.

a) At first, laptop connected to AP1 and AP2, so both network cards from the laptop
received the data from the server PC.

b) Then, laptop lost the connection from AP1 and connected to AP2 only, one network
card received the data (NIC2), while, the data was still transmission (the green progress bar
was moving on).

¢) The laptop connected to AP3 as well as AP2, both network cards from the laptop
received the data from the server PC.

d) The laptop lost the connection from AP2 and connected to AP3 only, one network
card received the data (NIC1), while, the data was still transmission (the green progress bar
was moving on).

e) The laptop connected to AP3 as well as AP2, both network cards from the laptop
received the data from the server PC. Finally, the transmission was successfully completed.

No. _ Time source Destinstion Protocol Length_Info
A2 DIIAO0T L DO T L3208 Uiy Ui o0 SUurce . o s v e Dnetion gmwr e
st s g a0 T ton 0 Codtnalog iopi 0ROl sale 877 8.75216000192. 168, 0. 104 102.168.0.107 upp 1066 Source port: fcp-addr-srvrl Destination port
23511 23. 6760750 192.168.0. 104 192.168.0.107 WP 1066 Source

8728 §.75369100192. 168. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23512 23. 6760990 192. 168.0. 104 19211680107 wp 1066 source
8729 8.75415100192. 168. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23513 23. 6767380 192.168.0.104 192.168.0.107 wp 1066 source
2 8730 8.75505600192.168. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23514 23. 6776280 192.168.0.104 192.168.0.107 uwP 1066 Source &
8731 8.75637700192.168. 0.104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23515 23. 6786040 192. 168.0.104 192.168.0.107 wP 1066 Source 0
8732 §.75743400192. 168. 0.104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23516 23. 6616240 192, 168. 0. 104 192,168.0.107 wP 1066 Source et
8733 §.75827400 192.168. 0. 104 192.168.0.107 UbP 1066 Source port: fcp-addr-srvrl Destination port
23517 23. 6825850 192. 168.0. 104 192.168.0.107 wP 1066 Source
8734 §.75902600192.168. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23518 23. 6829760 192. 168.0.104 192.168.0.107 wp 1066 source
8735 8.76007400 192. 168, 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination pert
510 23. 6836010 192.168.0.104 192.168.0.107 wp 1066 source
8736 8.76108000192. 168. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23520 23. 6840230 192. 168.0. 104 192.168.0.107 wP 1066 Source
o 8737 8.76208700192.168. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23521 23. 6847130 192.168.0. 104 192.168.0.107 wP 1066 Source
8738 8.76306800192. 168. 0. 10 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23522 23. 6856290 192. 168.0. 104 192.168.0.107 wp 1066 Source
8730 8.76419500192.168. 0. 104 192.168.0.107 UBP 1066 Source port: fcp-addr-srvrl Destination port
23523 23. 6866570 192. 168.0.104 192.168.0.107 wp 1066 source
8740 §.76509000 192. 168. 0. 10 192.168.0.107 UDP 1066 Source port: fcp-addr-srurl Destination port
23524 23. 6876250 192.168.0.104 192.168.0.107 wp 1066 source 2
741 5.76605800 192,168, 0,104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination pert
23525 23. 6886700 192. 168.0. 104 192.168.0. 107 wp 1066 source
8742 5.76877000192. 168. 0. 104 192.168.0.107 UbP 1066 Source port: fcp-addr-srvrl Destination port
23526 23. 6898220 192. 168.0. 104 192.168.0.107 wp 1066 Source %
8743 8.76902100192. 168. 0. 108 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23527 23. 6928410 192, 168. 0. 104 192,168.0.107 wP 1066 Source it
8744 §.76937800192. 168. 0. 104 192.168.0.107 UbP 1066 Source port: fcp-addr-srvrl Destination port
23528 23. 6928700 192. 168.0.104 19211680107 wp 1066 source
8745 §.77025800192. 166. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23529 23. 6930060 192. 168.0. 104 192.168.0.107 wp 1066 source
746 877102300 192.168. 0.104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
23530 23. 6935510 192. 168.0. 104 192.168.0.107 wp 1066 Source
O E e s 107 ¢ 0 e 8747 8.77214100192.168. 0,104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port
- EL6EL08 <1680 SiEce 8748 8.77315900192. 168. 0. 104 192.168.0.107 UDP 1066 Source port: fcp-addr-srvrl Destination port

@ Frame 1: 1066 bytes on wire (8528 bits), 1066 bytes captured (8528 bits) on inter]
[Ethernet IT, Src: Dell_84:08:8f (f8:bc:12:84:08:8F), DSt: LiteonTe bf:2b:c6 (9c:b]
Internet Protocol version 4, Src: 192.168.0.104 (192.168.0.104), Dst: 192.168.0.1§
[User Datagram Protocol, src Port: Fcp-addr-srvrl (55003, Dt Port: x11 (6000)

Frame 1: 1066 bytes on wire (8528 mts), 1066 bytes captured (8528 bits) on 1ntzrfa:e [
Ethernet II, Src: Dell_84:08:8F (f8:bc:12:84:08:8f), DSt: Tp-LinkT_2a:b5:18 (64
Irternet protocol version 4, Src: 192.165.0.104 (192.168.0.106), bst: 192.165.0. o (192.168.0.107)

EE]

= @ User Datagram protocol, src Port: fcp-addr-srurl (5500), DSt Port: xii (6000;
Bl) bata (1024 byres) &) :
(a) Laptop connected to AP1 and AP2
No. Time Source Destination Protocol Length Info iy —
38402 38. 8904980 192.168.0.104 192.168.0.107 e 1066 source IR TR 1 NI NIC2 5
38403 38, 8906390 192, 168.0.104 192.168.0.107 uP 1066 Source e i 1 : ; E
38404 35. 8913750 192.168.0.104 192.168.0.107 wP 1066 source Ran e q| easeon EEECTETE = 5
38405 38. 8917720 192.168.0.104 192.168.0.107 wP 1066 source Sap s 1 :
38406 38, 8935480 192, 168.0. 104 192.168.0.107 wP 1066 source 2038e S0 on I on 00 1 g
38407 40. 2285810 Fe80: :2C08:8776:1dd FF02: :1 DHCPV6 153 Solicit XID: 2R e AR e 1 E
38408 40. 2829200 LiteonTe_bf:2b:c6 Broadcast ARP sowmmihaseio (R E I PE S e 1| sewer: 121680104 I
38400 40, 2829990 : 02::1:ffd6:ccol IMPve 78 Neighbor solic| | 20300 26-9347260192.165.0.204 1 -
38410 40, 2830310 Fe80: :2C08:8776:1dd FFO2: 12 SEn s By e sl 1 &
38411 40, 2830690 Fe80: :2C08:8776:1dd FF02: 116 Iy 90 Multicast Listl| 20302 26-9330770192.168.0.104 1 FileName FileSize(K8) g
6:1dd FF02: :16 IoHPY6 SO MuTticast Listl| o202 29:9372830172 268 0,204 1 Behind the Scenes of One UC Davismpd 4408525 E:
12C08:8776:1d0702: :1:2 DicPY6 153 solicit on: o 22o) 28 9379012 208 0 204 1 e s g
38414 41, 2628890 Lueonre bt izbics rosdcssc i o e do g T I R 1 r
: “168.0. ubuntu-12.4 4-desktop-i386.i0 485440 ©
38415 41. 2829760 Fe80: :2€08:8776:1dd FFO2: 11 Es=ihion aoved B0 00120 2IRI00E L2 1eR D, TO8 1 &
s e solMimissri e B 0 B TR 1 E
38417 41 3122090 192.168.0.107 223.0.0.22 54 Menbership Repl| 20325 26-9402300192.168. 0.104 1 £
1 1 MDNS - 07 80
e 10700 rob--seta ey IO TRz o TSRS (e e B s R i 1 -
38420 41. 3637980 192.168.0.107 224.0.0.22 54 membership Rep| 20407 262427340 252.165. 0. 204 1 5
38421 417829300 192.168. 0. 107 224.0.0.22 52 Member< i el (B0l TR0 1T 0N 1 =
110 multicast List - 1630,
26404 26.9458340 192.168. 0. 104 1
38423 41, 0066080 Fe80: :2C08:8776:1dd FF02: 1113 LLMNR 84 Standard query, Erenily conneciiic =
= 26405 26.9467070 192.168. 0. 104 B e 150G (5% by
= — = — g = Unidentiied network
@ Frame 1: 1066 bytes on wire (8528 bits), 1066 bytes captured (8528 bits) on inter{| - | |
© Ethernet 1T, Src: Dell_84:08:8F (f8:bc:12:84:08:8F), Dst: LiteonTe bf:2b:c6 (ac:bj [@ FTame 17 1066 byres o ‘;’"Eﬂ(iizﬁf: = — =
= Taernes frovara) Version 4, src 192 leno.T0s (197 Tau0iTen) e e aemeo g = DEE T S0 R BT R e (| Wi Network Connection .
@ User Datagram protocol, Src Port: fcp-addr-srvrl (5500), DST Port: xii (6000} D e e e s ot o
[Data (1024 bytes) = . 2 z moobilenet Connected f3i]
@ Data (1024 bytes) ol
(b) Laptop connected to AP2 only
No. Time Source Destination Protocol Length Info 5 3
4UDLD 0. (4LIUDU LY. 10D, V. LU4 492,100, V. aur o 1uo0 Suurce porui if Ne. Tim Seu
40827 58.7442440192.168. 0. 104 192.168. 0.107 UbP 1066 sorce port: f]| 44237 33:ssusoy S ios uiive e i E
40828 58.7454420192.168. 0. 104 192.168.0.107 (o M 0 Soincat R B s e o |
40829 58.7463300192.168. 0. 104 192.168.0.107 b T0nn Sbiirce porE s | 220043, 8333230192165, 0,104 1921680107 - 1921680108 = 4
40830 58. 7466940 102.168. 0. 104 192.168.0.107 UDP 1066 source pore: | 2200 12 E30I0 0 R t08 0 104 3
40831 58.7476440192.168. 0. 104 192.168.0.107 UDBI 1066 SOUECe (poRt: (a0 SAR70 R eR 0 108 E
40832 58.7486350 192.168. 0. 104 192.168.0.107 o BT o6 o e o i (21 et A0 3
40833 587514530 192.168. 0. 104 192.168.0.107 UoP 1066 source e Senedp: 192168010 E
40834 58.7518270192.168. 0.104 192.168.0.107 UoP 1066 source Pl el L |
40835 58.7520800 192.168. 0. 104 192.168.0.107 UoP 1066 source e a0 E
40836 58.7526320102.168. 0. 104 192.168.0.107 UDP 1066 Source o0ty auen i tm D t0s FileName FileSize(KE) 3
40837 58.7536320 192.168. 0. 104 192.168.0.107 UDP 1066 Source port: F| A2207 43-5443720192.298.0.104 Behind the Scenes of One UC Davisrmpd 44085.25 E
ennomniidoin dRi o mmIvooud omnmamimacs i
: \168.0. \168.0. ource
40840 58. 7566150 192.168. 0,104 192.168.0.107 UoP 1066 source I U120 deSdop R 0 MUY E
40841 58.7576150 192.168. 0. 104 192.168.0.107 UoP 1066 source 22 a0 2o 0 10 3
40842 58.7586110192.168. 0. 104 192.168.0.107 UDP 1066 Source port: ff| 2232 13: 118022 208 0,104 .
40843 58.7597090 192.168. 0. 104 192.168.0.107 UDP 1066 Source Al s e 3
40844 58.7606040192.168. 0. 104 192.168.0.107 UoP 1066 source s)
40845 58.7616110192.168. 0. 104 192.168.0.107 UoP 1066 source Tt s nns i 4
40846 58.7639060 192.168. 0. 104 192.168.0.107 UoP 1066 source Pl s i E
40847 587640940 102.168. 0. 104 192.168.0.107 UoP 1066 source | 223 Baazea 2 Res 010 | —| Download E
40848 58.7646150192.168. 0.104 192.168.0.107 UDP 1066 Source f : oX05.0
o 42310 43.8558730192.168.0.104 Fie TranserSpeedk 10020K/s [530%] 3
7 E
@ Frame 1: 1066 bytes on wire (6528 bits), 1066 bytes captured (8528 bits) on incter{ | . >io1s 1066 byces on wire (851l :

[Ethernet IT, src: Dell_84:08:8f (f8:bc:12:84:08:8f) LiteonTe_bf:2b:c6 (9

= - . : Ethernet I1, src: Dell_84:08:8f (f

@ Internet Protocol Version 4, Src: 192.168.0.104 (192.168.0.104), DST: 192.168.0.1 : 10T TERS0 04 (103 1GR 0% 104); Dot T00 16H 0° 107 (192 167,0°107)
[User Datagram Protocol, src Port: fcp-addr-srvrl (5500), DSt Port: x11 (6000) = o L

Gt User Datagram Protocol, src port: fcp-addr-srvrl (5500), Dst Port: x11 (6000)

= Data (1024 bytes)

(c) Laptop connected to AP2 and AP3

EEEE
3
2
2
b1
8
g
H
=
3
0
3
]
IS
q

-) T e
T Ee e oo e S ce pores of [No, Time Source
60882 78.9577980192.168. 0.104 192.168.0.107 uoP 1066/SOURCEIBORECH| o g oo e N S R e e NICL NIC2 P
60883 78, 9643600 192.168. 0. 104 192.168.0.107 uoP 1066 source port: ff| 2710 SRR
60884 78.9646430192.168. 0. 104 192.168.0.107 uP 1066 Source ol T 1921680107 - 121680108 =
60885 78.9649090192.168. 0. 104 192.168.0.107 U 1066 Source e e
60886 78.9653270192.168. 0. 103 192.168.0.107 U 1066 Source Plg ey 21
60887 78. 9655990192, 168. 0. 104 192.168.0.107 UDP 1066 Source R e
60888 78.9657310192.168.0.104 192.168.0.107 UDP 1066 Source Pl lﬂ ot Sevel: 1921680104
60889 78, 9658610 192.168. 0,104 192.168.0.107 UDP 1066 Source Bl i e a0 it o
60890 78.9671370192.168. 0. 104 192.168.0.107 uP 1066 Source e e .
60891 78.9674610192.168.0.104 192.168.0.107 uP 1066 Source Hyas s e e FileName FileSize(KB)
60892 78.9677670192.168. 0. 104 192.168.0.107 U 1066 Source | a2 2 2100 ER0 S (M0 e 10 Behind the Scenes of One UC Davismpd 4408526
60893 78. 9687680192, 168. 0. 104 192.168.0.107 UDP 1066 Source e e Jd-7u60-windows-586.exe 13007892
60894 78.9699080192.168. 0. 104 192.168.0.107 UDP 1066 Source S e e b I e pem
60895 78.9707370192.168. 0,104 192.168.0.107 uP 1066 Source £ = 21 L S
60896 78.9717600192.168. 0. 104 192.168.0.107 uP 1066 Source A SR) s
60897 78.9727070192.168.0.104 192.168.0.107 uP 1066 Source I o
60898 78. 9745820192, 168. 0. 104 192.168.0.107 UDP 1066 Source | N e 4
60899 78.9750910192.168. 0. 104 192.168.0.107 UDP 1066 Source Tl sl
60900 78, 9757130192, 168. 0,104 192.168.0.107 UDP 1066 Source Tl e b e
60901 78.9767140192.168. 0. 104 192.168.0.107 uP 1066 Source i e J
60902 78.9777230192.168. 0. 104 192.168.0.107 uP 1066 Source B s P E
60903 78.9787580192.168. 0. 104 192.168.0.107 U O SORE S TR o o e e

File Trancfer Speed: 9990 KB/s [680 %]

Frame 1: 1066 bytes on wire (8528 bits), 1066 bytes captured (8528 bits) on inter;
Ethernet 1T, src: Dell_84:08:8F (f8:bc:12:84:08:8F), Dst: LiteonTe bf:2b:c6 (9c:b
Internet Protocol version 4, src: 102.168.0.104 (192.168.0.104), DST: 192.168.0. 1
User Datagram Protocol, Src Port: fcp-addr-srvrl (5500), DSt Port: xil (6000)
pata (1024 bytes)

EE]

[Frame 28914: 1066 bytes on wire (851
@ Ethernet II, src: Dell_84:08:8f (f
Internet Protocol Version 4, Src: 192.168.0.104 (192.168.0.104), Dst: 192.168.0.107 (192.168.0.107)
& User Datagram Protocol, Src Port: fcp-addr-srvri (5500), Dst Port: x1i (6000)

Data (1024 bytes)

(d) Laptop connected to AP3 only

®

- . -
e T e BRE e e oo e Mhurce pores if [No, e Source

102175 120.448590 192.168. 0. 192.168.0.107 uop FI0BRISORECE poRT i) =2 e o 2 e NICL NC2 E
102176 120.449468 192,168, 0. 192.168.0.107 uop 1066 Source port: F| 5/a2° 203213923192 . - E
102177 120.450423192.168. 0. 192.168.0.107 uoP 1066 source port: fI| goi00 1027517018702, 192.168.0.107 - 192.168.0.108 e A
102178 120.451491192.168. 0. 192.168.0.107 UDP 1066 Source port: F| 5 030 103217318 192 3
102179 120, 452476 192.168. 0. 192.168.0.107 uoP 1066 Source port: F| 57020 103213078192 E
102180 120.453484 192,168 192.168.0.107 UbP 1066 source port: f| | 5 449 10321388092 E
107181 120.454541192. 102.168.0.107 UDP 1066 source port: fl| o745 1022500002 Sevelp: 1921680104 E
102182 120.455607 192. v 192.168.0.107 UDP 1066 Source port: f| | 57247 105-221928°02- 4
102183 120. 456434 192.168. 0. 192.168.0.107 UDP 1066 Source port: F| 57add 193222580192 E
102184 120.457518192.168. 0. 192.168.0.107 uop A066isource portell\ - o et osi o Tyt filsitorne: faleseeelkn) E
102185 120.458799192.168. 0. 192.168.0.107 ubP 1066 source port: f|| 5 243 109-224308792- Behind the Scenes of One UC Davismpd 4408526 :
102186 120, 450469 192.168. 0. 192.168.0.107 UDP 1066 Source port: f|| 5 24% 103229950702 Jd-7u60-windows-586.exe 13007892 E
102187 120. 460487 192.168. 0. 192.168.0.107 ubP 1066 source port: f|| 5 %47 109226953792 T ———— e E
102188 120,461499192.168. 0. 192.168.0.107 UnpEs=1066 Source fparE i) = o2 L1000 SeRa0 2 : 5
102189 120. 462468 192.168 192.168.0.107 ubP 1066 Source port: F| 5 ad0 1932230787192 E
102190 120.463620192. 192.168.0.107 UDP 1066 Source port: F| 5 200 193223053192 E
102151 120.464503192. i 192.168.0.107 ubP 1066 source port: f| | 5 237 103-230938702- E
102192 120.465508192.168. 0. 192.168.0.107 UDPREETOSESolincefpOREEER (e e B St E
107193 120. 466513 192.168. 0. 192.168.0.107 UDPRETOREISoECEORT R (o S e]
102194 120.467224 192.168. 0. 104 192,168, 0.107 o ROlCiRE s fonEaR (PR T : ;) E
102195 124.280556 Tes 5c3:d327:9FaIcNPVe 86 Neighbor solic| | o7 33 00 R Lelatt TIE0t e = ® = E
102196 124. 284525 Fes 08:8776:1ddICHPVG 86 Neighbor Adver | 7330 100- 030398 TeR0: Sac: C37 T2 4
b ; - 1195¢3:d327: File Transfer Speed: ~ 0.0KB/s [100%] P
R AR R aE AR e R E R N R R e PSR SR RS RTS S

(e) Laptop connected to both AP3 and AP2, transmission completed

Figure 9 The laptop receives packets from the server PC in different situations for the WiFi handover demo

Based on the experiment, we performed a more straightforward demonstration. We played a
UC-Davis video in server PC, and watched the video simultaneously in the laptop side with a
walking near the Conference Center. Figure 10 is a split screen for walking path (top left), screen
view from laptop (bottom left) and a student holding the laptop walking near the conference center.
The video was played smoothly in laptop side without lagging and data dropping

Figure 10 Split screen for real time demonstration for the WiFi handover demo

iii) Broker-based multi-domain UCD-CENIC(COTN)-ESNet software-
defined networks

CENIC Digital
California
Network

100GE China
(Tsinghua UnivY
OpenFlow

Internet 2 KDDI Labs
apan
AL2S (Yapan)
Controller.’
PerfSonar doose o
Web100, . .
= 10 (Univ. Bristol)
~ ; CENICHPR ETRI
- (Korea!
i

Network
1GE,
1GE
NEES

Campus
Production
Network

Campus
Border
Router

Genome
Center

0GE

—=f|GENI rack / ExoGENI
=}

0GE =}

Layer 2
Center for

100GE
100GE |EI
Mind and Brai
32x32 Optical
Switches LSST storage .
Pacific
‘{@ Wave
LSST Cluster <& Data Center

NGNS Labs

BGI cluster

Figure 11 UC Davis campus network infrastructure. Red colored items indicates the new features and connections that will be
introduced.

During the last quarter, we worked on the planning of the UC Davis campus network with
heterogeneous features and extended connectivity. The UC Davis campus networking
infrastructure brings the following revolutionarily new features to the current infrastructure with a
single wavelength architecture with electronic switches and terminals. Figure 11 illustrates the
newly proposed infrastructure which includes (a) reconfigurable optical SDN as the underlying
substrate built upon the rich optical-fiber infrastructure of the UC Davis campus and (b) multiple
WIMAX base stations and mmWave MIMO to support high-end mobile applications such as
emergency healthcare or collaborative visualization applications. In addition, it will add two 100
Gb/s connections to the Genome Center and the new data center in construction. The logical
topology of Figure 11 is geographically laid out on the physical topology of Figure 12. We will
exploit UC Davis’ rich fiber infrastructure spanning 5300 acres divided into twelve geographic
areas, each of which are served by 96~144 strands of single mode fiber. Each of these Area
Distribution Facilities (ADF) feeds an average of ten buildings with 48 strands of single mode
fiber (total of 144 fiber strands) to each Building Distribution Facility (BDF). The PI’s NGNS
laboratories and other labs have 24~48 strands of fiber connections to the campus fiber
infrastructure of Figure 12(a), potentially capable of simultaneously connecting to 96 separate
optical nodes on UC Davis campus and reaching out to CalREN, ESnet, UC Davis Medical
Center, Internet2, and other global networks as illustrated in Figure 12. We purchased two 32x32
Polatis 1000 optical switches with OpenFlow control to interconnect these labs (nodes) to create a
reconfigurable optical network on campus. The flexible grid wavelength selective switches
(WSSs) to be used in conjunction with the Polatis switch allow operation of the proposed networks
as a fixed grid WDM networks or elastic optical networks thus future upgrades can take place
seamlessly. By reconfiguring the optical switches, it will be possible to reconfigure the network
topology interconnecting the different optical nodes.

(a) UC Davis Campus Research (b) CalRen-XD/HPR and (c) ESnet (d) Internet 2 and
Network and Science DMZ | CcO othenGlobg_char[,le[g,,

Mrak e =
Kemper T 96sm/

i .
Telecom~” 48 144sm -
T : \ —144sm ™
RecHall 96sm/ | S8/ gq OBsm/ e
6 /Kerr 4gmm | 48mm gmm 48MM adsm

7/ AOB4
West Campus
/3 Antenna Farm

H 96sm/ n 144sm
f 48mm
10 south Campus fagsm 985M/ 963m/ "~ 96sm/ | 96sm/
111 Research Park” A8mm_4gmm 48mm | 48mm
\ 144sm
. [l sy | 4]

W oR W N e

\\ “4dsm 14dem 48mm
3

o Backbone Fiber Topology
e atucpavis

Figure 12(a) UC Davis Campus Fiber Infrastructure with ~144 fiber strands. (b) CalRen-XD and COTN network,
(c) ESnet network. (d) Internet2 and other global networks.

This demo showcased a software-defined multi-domain networks from UCD campus to
CENIC to ESNet. For the CENIC, the COTN testbed is used to connect UCD campus and ESNet
OpenFlow testbed.

Figure 13 shows the control plane framework of a broker-based multi-domain system which
can provide effective resource management for the multi-domain testned. The framework consists
of a centralized broker and several OpenFlow controllers (OF-Cs) that each attaches to several
OpenFlow agents (OF-AGs) directly.

The broker functions as the first level “brain” of the framework, and it controls all the
domains. Each domain has a centralized OF-C which functions as the second level “brain”, and it
controls all the data plane equipment in its domain. The OF-AGs are used to configure the data
plane equipment it attached, and each OF-AG talks with its OF-C using OpenFlow protocol.

We proposed a broker protocol to enable communication between broker and OF-C. The
proposed protocol includes 4 kinds of messages, they are Broker-Request, Broker-Assign, Broker-
Reply, Broker-Confirm messages. In our demo, the Broker and OF-C are implemented with the
POX platform, and the OF-AG is programmed based on the Open-vSwitch (OVS) running on

Linux.
e 9 Broker-Request
Broker
ﬁ e Broker-Assign
o Broker-Reply

6 Broker-Confirm

=z d
POX 1 POX 2 POX 3 I

(1) RequeV \@‘ Configure domain A l@ Configure domain B l@ Configure domain C
=k, R

Domain B

2 B4 T

Figure 13 control plane framework of a broker-based multi-domain system

Next, we will explain how a multi-domain request is served in this framework.

Step1: The OF-AG for a date plane equipment forwards a request for client traffic to its OF-C
using the Packet-In message.

Step2: The OF-C receives the Packet-In message, and forwards a Broker-Request message to
the broker.

Step3: The broker receives the Broker-Request message, decides the domains along the
routing path according to the request, and then sends Broker-Assign messages to the OF-Cs in
corresponding domains.

Step4: Each OF-C receives the Broker-Assign message, then calculates a routing path
scheme in its own domain, and then forwards a Broker-Reply message to the broker.

Step5: The broker receives all the Broker-Reply messages from the corresponding domains,
if all the domains have feasible schemes; it sends Broker-Confirm messages to the OF-Cs.

Step6: After receiving Broker-Confirm messages, the OF-Cs send Flow-Mod messages to the
corresponding OF-AGs to setup the path.

Broker-based Inter-domain control framework

”””” : ubf.-cmfemef@Pubf.-cmtemetﬁOF- Controller 3

OF-Controller1 OF-Controller 2 - FlowVisor
£ Form o
ESNet

CENIC OpenFlow OpenFlow testbed

. VLAN y
= ~
p 1590 S 2001 B 2001 S0
e
p— —— = T
VAN e
002

f-sw-1 2002 sunn-crs Ibl-mr2 Ibl-tb-of-3
HP2820 qggg SnvIZ-of-sw-1 snvi2-of-sw-1 2
(kemper2230) idf13880 border-dav-sci cenic.net cenic.net es.net .es.net

UcC Davis
Conference Center

Figure 14 Multi-domain UCD-COTN-ESNet network testbed for GEC’20 demo

The details for the multi-domain UCD-COTN-ESNet network testbed for the GEC’20 demo
is shown in Figure 14. The broker-based control plane is deployed to set up an end-to-end path
across UCD campus, COTN and ESNet for the bi-directional traffic between Host 1 and Host 2.
Figure 15 and Figure 16 show the Wireshark captures from broker and POX1 (POX of domainl),
respectively. From the Figure 16 we can see that the control plane processing latency to setup a
path is around 4.73 seconds. Figure 17 and Figure 18 are the Wireshark capture of the Flow Mod
messages to the COTN and ESNet OpenFlow switches respectively. It can be seen that, to enable
the data transmission, the flow entries need to match the input port and input VLAN, and set
correct output ports and output VLAN in the action field. This demo verified GENI multi-domain
capabilities. However, we observed that the control plane processing latency to create an inter-
domain path is long, which is the major limitation for the GENI multi-domain networks.

Mo,

935
998
997
1002
1004
1014
1048
1043
1050

581945
. 581966
581974
. 582365
582549
. 728272
. 098136
098154
098163

Mo,
. 567489
. 275386
. 322965
323335
.B38119
. 244199
. 294380
285212
. 285918
. 205594
. 287206

1781
1784
1786
1809
1923
1825
1827
1529
1831
1833

462 32.568347

463 32.568471
464 32.568564
465 32.568652
¥ Match
» Match Types
Input Port: 49

Cookie:

Priority: 32768
Buffer ID: None

¥ Flags

¥ Qutput Action(s)

Len: 8
Output port: 58

of Actions: 2

169.
169.
169.
169.

out Port (delete* only): None

¥ Action
Type: Set the 802.
Len: 8
VLAN ID: 2801

¥ Action

Source Destination

169.237.74, 207 169,237.74.204 Broker 67 2333 = 40388 [Type: Assign]
169.237.74. 207 169,237.74.206 Broker 67 2333 > 49454 [Type: Assign]
169.237.74. 207 169,237.74.198 Broker 67 2333 > 47785 [Type: Assign]
169.237.74, 204 169,237.74.207 Broker 67 40368 = 2333 [Type:Replyl
169,237.74,198 169.237.74.207 Broker 67 47795 > 2333 [Type:Reply]
169,237.74,.206 169,237.74.207 Broker 67 49454 > 2333 [Type:Reply]
169.237.74. 207 169.237.74.204 Broker 67 2333 = 40368 [Type:Confirm]
169.237.74, 207 169,237.74.208 Broker 67 2333 > 49454 [Type:Confirm]
169.237.74, 207 169,237.74.198 Broker 67 2333 = 47795 [Type:Confirm]
Figure 15 Wireshark capture from broker
Source Destination Protocol Length| Info

00: 01 OFP+0x0908

Packet In (AM) (BufID=280) (130B)

169,237.74.198 169,237.74,207 Broker 67 47795 = 2333 [Type:Request]
169.237.74.207 169.237.74.198 Broker 67 2333 = 47795 [Type:Assign]
169,237.74.198 169,237.74,207 Broker 67 47795 > 2333 [Type:Replyl
169.237.74.207 169.237.74.198 Broker 67 2333 = 47795 [Type:Confirm]
169.237.74.190 169,237.74.198 OFF 74 Echo Request (SM) (8B)
169,237.74.198 169,237.74,190 OFP 74 Echo Reply (SM) (8B)
169.237.74.198 169.237.74.190 OFP 154 Flow Mod (CSM) (88B)
169.237.74.198 169,237.74.190 OFF 154 Flow Mod (CSM) (B8B)
169,237.74.198 169,237.74.190 OFP 154 Flow Mod (CSM) (88B)
168.237.74.198 169,.237.74.190 OFP 154 Flow Mod (CSM) (88B)

Figure 16 Wireshark capture from POX1

237.74.205
237.74.205
237.74.205
237.74.205

137.164.80.79
137.164.80.79
137.164.80.79
137.164.80.79

Flow Mod (CSM) (88B)
Flow Mod (CSM) (88B)
Flow Mod (CSM) (88B)
Flow Mod (CSM) (88B)

OFP
OFP
OFP

Input VLAN ID: 1898
0x0000000000000800

Command: New flow (0)

Idle Time (sec) Before Discarding: @
Max Time (sec) Before Discarding: ©

(not associated with a physical port)
1 = Send flow removed: Yes (1)

. = Check for overlap before adding flow: No (@)
. = Install flow into emergecy flow table: No (@)

1q VLAN id. (1)

Type: Output to switch port (@)

Max Bytes to Send: @

Figure 17 Flow entry to the COTN OpenFlow switch

256 20.390139 169.237.74.162 198.129.228.17 OFP Flow Mod (CSM) (88B)

257 20.390294 169.237.74.162 198.129.228.17 OFP Flow Mod (CSM) (88B)
302 23.742903 169.237.74.162 198.129.228.17 OFP Echo Request (SM) (8B)
303 23.748384 198.129.228.17 169.237.74.162 OFP Echo Reply (SM) (8B)
438 35.391494 169.237.74.162 169.237.74.17 OFP Echo Request (SM) (8B)
440 35.391734 169.237.74.17 169.237.74.162 OFP Echo Request (SM) (8B)
AA1 IR 2@1ART 1RGQ 23T TA 1RY 1RQ 23T TA 17T nNED FErhn Banlw (€M) (an)
+ Header
—/ Flow Modification
— Match

+ Match Types
Input Port: 17
Input VLAN ID: 2001
Cookie: 0x0000000000000000
Command: New flow (8)
Idle Time (sec) Before Discarding: @
Max Time (sec) Before Discarding: @
Priority: 32768
Buffer ID: None
Out Port (delete* only): None (not associated with a physical port)
+ Flags
— Output Action(s)
-/ Action
Type: Set the 862.1q VLAN id. (1)
Len: 8
VLAN ID: 2802
—| Action
Type: Output to switch port (@)
Len: 8
Output port: 18
Max Bytes to Send: @
of Actions: 2

Figure 18 Flow entry to the ESNet OpenFlow switch

As requested, we summarize the key steps and operations to show how to repeat the
framework:
(1)Build the testbed
Step1: Change the parameters of Broker:
Edit: pox/ext/broker server.py:
IP address -> broker’s IP address
Step2: Change the parameters of POX:
Edit: pox/ext/broker client.py:
IP address -> broker’s IP address
Step3: Change the parameters of OVS / OpenFlow switch
Command:
sudo ovs-vsctl add-br br0
sudo ifconfig br0 up
sudo ovs-vsctl set-controller br0 tcp:xxx.xxx.xxx.xxx:6633 (xxx is its POX’s IP
address)
(2) Repeat the experiment
Step1: Broker
cd pox
./pox.py broker server broker brain(2
Step2: POX
cd pox
./pox.py broker client multidomain01
Step3: OVS
cd swl
sudo ./sop 3
Step4: Wireshark
For Broker: (capture from ethQ)
cd wireshark-1.6.7
sudo ./wireshark
filter: broker
For POX: (capture from eth0)

cd wireshark-1.6.7
sudo ./wireshark
filter: of or broker

B. Project participants

Prof. S. J. Ben Yoo

Heterogeneous Multi-Domain Network Testbed

UC Davis, PI

Prof. Matt Bishop

Security in Scalable Programmable Networks

UC Davis, Co-PI

Prof. Chen-Nee Chuah

Monitoring in Scalable Software Defined Networks

UC Davis, Co-PI

Dr. Lei Liu OpenFlow and control plane, Testbed UC Davis
Dr. Roberto Proietti Optical switch UC Davis
Mr. Xiaotao Feng Wireless networking UC Davis
Mr. Mehdi Malboubi Network measurement UC Davis
Prof. Zuqing Zhu OpenFlow and control plane USTC, China
Mr. Shoujiang Ma OpenFlow and control plane USTC, China
Mr. Xiaoliang Chen OpenFlow and control plane USTC, China
Mr. Cen Chen OpenFlow and control plane USTC, China

Prof. Guanghua Song

OpenFlow and wireless networking

ZJU, China / UC Davis

Prof. Xiong Wang

Network monitoring and measurement

UESTC, China / UC

Davis

Prof. Wei Xu

OpenFlow for data center

Tsinghua Univ, China

C. Publications (individual and organizational)

N/A

D. Outreach activities

In the project, we demonstrated a multi-domain software defined networking with COTN

and ESNet. In addition, we plan to connect to the testbeds of many international collaborators such
as University of Bristol, UK and KDDI, Japan etc to conduct the multi-domain SDN/OpenFlow

experiments.

E. Collaborations

Chin Guok Multi-domain UCD-COTN-ESNet demo ESNet
Will Black Multi-domain UCD-COTN-ESNet demo CENIC
Rodger Hess Campus Network UC Davis
Inder Monga Multi-domain UCD-COTN-ESNet demo ESNet
Brian Tierney Multi-domain UCD-COTN-ESNet demo ESNet
Dave Reese Multi-domain UCD-COTN-ESNet demo CENIC
Brian Court Multi-domain UCD-COTN-ESNet demo CENIC
Mark Redican Campus Network UC Davis
Darrell Newcomb Multi-domain UCD-COTN-ESNet demo CENIC
David Wong Campus Network UC Davis
Kevin Kawaguchi Campus Network UC Davis
Kevin Mayeshiro Campus Network UC Davis
Evangelos Chaniotakis Multi-domain UCD-COTN-ESNet demo ESNet
Bruce A. Mah Multi-domain UCD-COTN-ESNet demo ESNet
Steven Edington Campus Network UC Davis
Zhi-Wei Lu Campus Network UC Davis
Dr. Peter Siegel Campus OpenFlow Network UC Davis
Dr. David Reese CENIC COTN CENIC
Dr. Brian Tierney ESnet Software Defined Networks ESnet

Dr. Joe Mambretti ICAIR and iGENI ICAIR
Dr. Larry Smarr e-Science and GRID Computing Applications Cal-IT2

Dr. Takehiro Tsuritani KDDI OpenFlow Testbed KDDI
Prof. Dimitra Simeonidou EU OpenFlow networking testbed U Bristol
Prof. Dipakar Raychadhuri MobilityFirst and Wireless Network Testbed Rutgers U
Prof. Nick McKeown OpenFlow in the Cloud Networking and Applications Stanford
Dr. Scott Shenkar GENI-SDIA Experiments ICSI

Dr. Sean Peisert Advanced Security Experiments LBL

Dr. Philip Papadopoulos Supercomputing and Big Data applications SDSC
Prof. Bernd Hamann Collaborative multi-site visualization applications UC Davis
Prof. Bryan Jenkins Energy-Grid and West Campus Zero Energy applications UC Davis
Prof. S. Felix Wu GENI Rack and Social Networking UC Davis
Dr. Thomas Nesbitt Healthcare Informatics applications UC Davis

F. Other Contributions and Future Plans

In this section, we briefly summarize our recent works and future plans for GEC’21 demo.
In GEC’21, we will showcase the intelligent traffic inference. We will implement a prototype of
an intelligent SDN based traffic (de)aggregation and measurement paradigm (iSTAMP), which
leverages OpenFlow to dynamically partition TCAM entries of a switch/router into two parts. In
the first part, a set of incoming flows are optimally aggregated to provide well-compressed
aggregated flow measurements that can lead to the best estimation accuracy via network inference
process. The second portion of TCAM entries are dedicated to track/measure the most rewarding
flows (defined as flows with the highest impact on the ultimate monitoring application
performance) to provide accurate per-flow measurements. These flows are selected and "stamped"
as important (or rewarding from monitor's perspective) using an intelligent Multi-Armed Bandit
(MAB) based algorithm. In our experiments, we will consider two network topologies, Data
Center Network and GEANT Network, and use real traces from Abilene, Geant and Data Center.

Recently, we designed the network traffic measurement demo in detail, and we also
implemented the iISTAMP (refer previous progress report for the introduction for iSTAMP) traffic
measurement framework and tested most of the software codes in a HP2920 OpenFlow switch. In
this report, we will first introduce the network monitoring demo in the next GENI meeting
(GEC’21), and then we will introduce the progress we have made for the demo.

PoX
Controller

Traffic Generator Traffic Generator Traffic Generator

Figure 19. The architecture of the network monitoring demo
i) Network monitoring demo introduction

In this demo, we would like to show how to utilize the traffic management flexibility of
Openflow switch to improve the per-flow size measurement accuracy. Figure 19 shows the
architecture of the Demo. This Demo mainly has three components: 1) the traffic generators; 2)
the SDN consists of Openflow enabled switches; and 3) the OpenFlow controller.

The traffic generators are used to generate traffic flows that will be measured at the SDN
switches. To simulate the real network environment, the traffic generators replay the traffic flows
according the traffic trace collected in GEANT network. There are 529 aggregated flows in
GEANT. So we use several traffic generators to replay the 529 flows, and each of the traffic
generators replays a portion of the flows.

We use the PoX as the OpenFlow controller. Firstly, the controller computes the routing
tables and installs the routing tables in the TCAMS of the OpenFlow switches. Then the controller
updates the measurement rules in the TCAMS of the OpenFlow switches for the k largest flows
passing the OpenFlow switches at the beginning of each measurement interval. These largest
flows will be selected for per-flow monitoring using k TCAM entries. The remaining flows are
aggregated based on routing rules and hence only aggregate statistics are available. At last, the
controller collects the counter statistics of the TCAM entries, and uses these statistics to
estimate/infer the sizes for all flows. The estimated per-flow size and the real per-flow size will be
displayed on the monitor.

The OpenFlow switches forward the packets according to the routing table installed in its
TCAM. When the OpenFlow switches receive the status request, they send the statistics of their
flow entries to the OpenFlow controller.

ii) The current progress

We have completed the programming for the OpenFlow controller, i.e., the measurement
framework of iISTAMP. In order to test the codes, we implemented a simple traffic generator,
which generates random traffic as shown in Figure 20. Currently, most of the software codes
running on the controller have been test by using a HP2920 OpenFlow switch and a simple traffic
generator. We are programming and testing the traffic generator now.
@ Transmission

Server

Receive Rate 36.90625 kbps

Server IP:

Server Port: "~ W
Close

Client
Local IP: = Dst IP: Send Mode: i
Local Port: !~ Dst Port: minRate: maxRate: Interval: (s)

Stop

Figure 20 The simple traffic generator

In the next step, we will mainly focus on the following work.
(1) Test the traffic generator;
) Test the iISTAMP by using the traffic generator, which replays the flows in GEANT
network;
3) Implement a graphical interface to show the measurement results;
4) Directly, implement the optimization framework on the controller.

