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I. Major Accomplishments
A. Milestones Achieved

Table 1 summarizes the status of completion for the different milestones indicated in Year 1
period. This report discusses in particular the technical progress related to tasks and milestones
highlighted in yellow for the period April 1, 2014 — June 30, 2014.

Table 1. List of milestones achieved with status of completion.

Task (GEC) Milestones Status

1 (GEC19) Deploy two-domain OpenFlow control COMPLETED
framework in UC Davis campus and conduct a

two-domain experiment between Davis campus
network domain and another network domain

2 (GEC19) Showcase the two-domain control COMPLETED
framework and experiment results in GEC 19.
Include a demo of the experiment running at the
UC Davis campus

3 (GEC19) Initial results/deployment plan for COMPLETED
running this two-domain experiment in GENI
4 (GEC19) Decide which Big Data application is COMPLETED

going to be used and have a detailed plan for
incorporating the application to the multi-domain
control experiment

5 (GEC19) Present a plan on how the multi- COMPLETED
domain control framework will be connected to
GENI once the UC Davis rack is up

6 (GEC19) Present a plan on how to expand COMPLETED
control plane to incorporate more than two
domains
7 (GEC19) Provide feedback to the community COMPLETED
8 (GEC20) Live demonstration of Experiment A COMPLETED
running in GENI
9 (GEC20) Live demonstration multi-domain COMPLETED
experiment using more than two domains
10 (GEC20) Live demonstration of experiment COMPLETED
showcasing GENI multi-domain capabilities and
limitations
11 (GEC20) Incorporated a Big Data application COMPLETED
preferably from another domain science
12 (GEC20) Preliminary results from the second COMPLETED
experiment
13 (GEC20) Documentation on how to repeat the COMPLETED
experiment in GENI
14 (GEC20) Provide feedback to the community COMPLETED

The following sections will describe in details the studies and findings related to the tasks
mentioned above. In particular, during the recent three months of the project, our research team
focused on the following activities:




1. Application-aware big data over reconfigurable optical networks
2. Dynamic WiFi handover
3. Broker-based multi-domain UCD-CENIC(COTN)-ESNet software-defined networks

The following sections will describe in details the studies and findings related to each of the
activities above.

B. Deliverables Made
The deliverables include:
1. A poster file has been presented in GEC’20, showing the project progress and our demos.

2. Three live demos entitled “application-aware big data demo”, “WiFi handover demo” and
“multi-domain UCD-COTN-ESNet demo” have been presented in GEC’20.

II. Description of Work Performed During Last Quarter
A. Activities and findings

i) Application-aware big data over reconfigurable optical networks

Figure 1 shows the OpenFlow-based SDN architecture for optical networks with
reconfigurable optical switching nodes. An intelligent OpenFlow-based controller can be deployed
to support multi-thread processing and can dynamically perform routing and wavelength
assignment algorithms through its path computation element (PCE) module. The PCE can get the
network information from the traffic engineering database (TED) for the path computation, and
after a successful path computation, the PCE can notify the OpenFlow engine to send the extended
OpenFlow messages to the corresponding OpenFlow agents for path provisioning.

To support optical networking by using an OpenFlow-based control plane, all the network
elements (NEs) in the optical networking are required to be extended with the OpenFlow
capability. This can be achieved by introducing an OpenFlow agent on top of each NE, as shown
in Figure 1. A centralized OpenFlow controller (e.g. NOX) can communicate with all the
OpenFlow agents through the extended OpenFlow protocol. The OpenFlow protocol extensions
are summarized below:

1. The Feature Reply message is extended to report the new features of an optical switching
nodes (e.g., switching capability, available wavelengths, etc.) to the NOX controller;

2. The Packet In message is extended to carry the required bandwidth of each incoming flow;

3. The Flow Mod message is extended to carry the path computation results from the NOX,
including input/output ports, wavelengths, etc. for each OpenFlow agent to control the
underlying optical switching node.
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To demonstrate the importance of optical technologies for functionalities that go beyond the
point-to-point transmission, in case of latency-sensitive big-data application, we setup an
application-driven Big Data demo involving the optical transmission and switching of high
bandwidth uncompressed 4k real-time video signals under a unified OpenFlow-SDN control
plane. The demo, depicted in Figure 2, spanned across three rooms located in two different
buildings in our UC Davis Campus. The rooms and buildings were interconnected through a
certain number of single mode fiber (SMF) strands. The distance between the two buildings is
about one kilometer.

One 4k camera and one 4k monitor were placed in Kemper Hall building. A 32-port
OpenFlow-controlled optical circuit switch, as detailed above, was placed in the same building but
in a different room and specifically in the building distribution facility (BDF). Two strands of
fibers connected the BDF with the other room. Two monitors and a second camera were placed in
the conference center ballroom where the GEC20 demo session took place. Three fiber strands
connected the BDF with the conference ball-room. The whole system represented a high
bandwidth, real-time video conference system for latency-sensitive application since no Video
compression and decompression was involved. The bandwidth of the 4k signals used was 12 Gb/s.
These 12 Gb/s signals generated by the two cameras were output from the cameras through four
3G-SDI interfaces, each one carrying a 3Gb/s signal. A media converter was responsible for
converting the four 3G-SDI signals in the optical domain. The output of the media converter was
composed by four wavelengths, each one modulated by one of the four 3G-SDI signals (see Figure
3). The media converter was connected then to a fiber patch panel to launch the optical signal into
the fiber strand connecting with the BDF. In the BDF the signal was switched in the optical
domain (no O/E/O conversion) in order to reach one or both 4k monitors in the ballroom of the
conference center. For each 4k monitor in the ballroom, an optical to 3G-SDI converter was used
to send the four 3G-SDI signals to the 4k monitor. Note that, the optical switch was remotely
controlled from the conference center through the public internet network.
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Figure 2. Application-aware Big Data 4k demo over dark fiber campus infrastructure. Multicast scenario is shown.

Figure 4 shows four different quadrants composing the 4k images. There images were taken
during the testing phase of the demo. Each of the four quadrant is carried by one of the 3G-SDI

signal generated by the 4k camera.

-

+4dBm total output power
+ 1512.86 nm

* 1531.64 nm

¢ 1553.72 nm

+ 1569.8 nm

Figure 3. 3G-SDI to Optical Media converter and related output observed on an optical spectrum analyzer.
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Figure 4. Four different quadrants composing the 4k images.

The demonstration above was the first demonstration of big-data application over a
reconfigurable optical network in UCD campus using the ground fibers. Next steps could involve
for instance the possibility to adjust the bandwidth and resolution of the transmitted video in case
of a heterogeneous network where the signal could travel through wired and wireless networks,
each one with different bandwidth requirements.

ii) Dynamic WiFi handover

In this WIFI seamless handover demo, we set up an OpenFlow-wireless network testbed and
conducted some OpenFlow-wireless network experiments. The testbed includes one OpenFlow-
enabled switch (HP 2920) and three wireless routers (TP-LINK WL-TR1043ND). We have
upgraded the routers’ firmware to OpenWrt, and modified some modules and services of OpenWrt
to support OpenFlow 1.0 protocol. The experiment network topology is depicted in Figure 5.

—— OF Control plane connection OF Controller
—— Data plane connection
= == WIiFi Wireless connection

OF Switch | — o

‘-“_-/__'_-—-"’-—H’q"\ Server PC
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Figure 5 The experimental network topology for the WiFi handover demo

In practice, we deploy one OpenFlow switch and three wireless routers in the Conference
Center of UC-Davis campus. Some desktop PCs are connected to OpenFlow switch, while some



laptops are connected to the wireless routers via WiFi connections. The OpenFlow controller in
the experiments is POX, which runs on a desktop PC and connected to a general purpose switch in
the network in a wired way, as shown in Figure 6.

Figure 6 Equipment implement in Conference Center for the WiFi handover demo

By deploying and configuring the POX and the switch correctly, the connection between the
controller and the switch is established as long as the corresponding services are available, as in
Figure 7.

C:\pox>python pox.py openflouw.of_01 --address=192.168.0.101 --port=6622 py
POX ©.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.
INFO:core:POX 0.2.8 (carp) is up.

Ready.

POX> INFO:openflow.of_01:[f0-92-1c-cb-33-¢c0l2 1] connected

POX>

Figure 7 Establishing connections between the controller and the switches for the WiFi handover demo

We have conducted the provisioning of flow table entries for the OpenFlow-enabled switch
and the OpenFlow-enabled wireless routers, to enable flow control based on flow tables.
Writing flow table entries to HP 2920 by POX:
msg = of.ofp_flow_mod()



msg.match.in_port =5

msg.actions.append(of.ofp_action_output(port=6))

msg.actions.append(of.ofp_action_output(port=7))

msg.actions.append(of.ofp_action_output(port=8))

core.openflow.connections[827460292391872L].send(msg)

msg = of.ofp_flow_mod()

msg.match.in_port =6

msg.actions.append(of.ofp_action_output(port=5))

core.openflow.connections[827460292391872L].send(msg)

msg = of.ofp_flow_mod()

msg.match.in_port =7

msg.actions.append(of.ofp_action_output(port=5))

core.openflow.connections[827460292391872L].send(msg)

msg = of.ofp_flow _mod()

msg.match.in_port =8

msg.actions.append(of.ofp_action_output(port=5))

core.openflow.connections[827460292391872L].send(msg)

Writing flow table entries to TL-WRI1043ND:

dpctl show tcp:127.0.0.1:6634

dpctl dump-flows tcp:127.0.0.1:6634

dpctl add-flow tcp:127.0.0.1:6634 idle timeout=0,in_port=1,actions=output:2

dpctl add-flow tcp:127.0.0.1:6634 idle_timeout=0,in_port=2,actions=output:1
To testify the seamless handover property, we conducted the following experiment:
1. Transfer a file from the server PC (using an originality application) to the laptop. Figure 8

is a snapshot indicating the packets captured by WireShark in server PC.

Fiten | icmp

Destination
192716¥. 0.204

59
:08:8F), Dst: L1 (oc:b7: )
162.168.1.104 (192.168.1.104), Dst: 192.168.0.107 (192.168.0.107)

Figure 8 The server PC transmitted packets to the Laptop

2. Laptop received the file (using an originality application) from the server PC. Figure
9(a)-(e) are snapshot indicating the packets captured by WireShark from laptop in different
situations.

a) At first, laptop connected to AP1 and AP2, so both network cards from the laptop
received the data from the server PC.

b) Then, laptop lost the connection from AP1 and connected to AP2 only, one network
card received the data (NIC2), while, the data was still transmission (the green progress bar
was moving on).

¢) The laptop connected to AP3 as well as AP2, both network cards from the laptop
received the data from the server PC.

d) The laptop lost the connection from AP2 and connected to AP3 only, one network
card received the data (NIC1), while, the data was still transmission (the green progress bar
was moving on).



e) The laptop connected to AP3 as well as AP2, both network cards from the laptop
received the data from the server PC. Finally, the transmission was successfully completed.
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(e) Laptop connected to both AP3 and AP2, transmission completed

Figure 9 The laptop receives packets from the server PC in different situations for the WiFi handover demo

Based on the experiment, we performed a more straightforward demonstration. We played a
UC-Davis video in server PC, and watched the video simultaneously in the laptop side with a
walking near the Conference Center. Figure 10 is a split screen for walking path (top left), screen
view from laptop (bottom left) and a student holding the laptop walking near the conference center.
The video was played smoothly in laptop side without lagging and data dropping

Figure 10 Split screen for real time demonstration for the WiFi handover demo

iii) Broker-based multi-domain UCD-CENIC(COTN)-ESNet software-
defined networks
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Figure 11 UC Davis campus network infrastructure. Red colored items indicates the new features and connections that will be
introduced.

During the last quarter, we worked on the planning of the UC Davis campus network with
heterogeneous features and extended connectivity. The UC Davis campus networking
infrastructure brings the following revolutionarily new features to the current infrastructure with a
single wavelength architecture with electronic switches and terminals. Figure 11 illustrates the
newly proposed infrastructure which includes (a) reconfigurable optical SDN as the underlying
substrate built upon the rich optical-fiber infrastructure of the UC Davis campus and (b) multiple
WIMAX base stations and mmWave MIMO to support high-end mobile applications such as
emergency healthcare or collaborative visualization applications. In addition, it will add two 100
Gb/s connections to the Genome Center and the new data center in construction. The logical
topology of Figure 11 is geographically laid out on the physical topology of Figure 12. We will
exploit UC Davis’ rich fiber infrastructure spanning 5300 acres divided into twelve geographic
areas, each of which are served by 96~144 strands of single mode fiber. Each of these Area
Distribution Facilities (ADF) feeds an average of ten buildings with 48 strands of single mode
fiber (total of 144 fiber strands) to each Building Distribution Facility (BDF). The PI’s NGNS
laboratories and other labs have 24~48 strands of fiber connections to the campus fiber
infrastructure of Figure 12(a), potentially capable of simultaneously connecting to 96 separate
optical nodes on UC Davis campus and reaching out to CalREN, ESnet, UC Davis Medical
Center, Internet2, and other global networks as illustrated in Figure 12. We purchased two 32x32
Polatis 1000 optical switches with OpenFlow control to interconnect these labs (nodes) to create a
reconfigurable optical network on campus. The flexible grid wavelength selective switches
(WSSs) to be used in conjunction with the Polatis switch allow operation of the proposed networks
as a fixed grid WDM networks or elastic optical networks thus future upgrades can take place
seamlessly. By reconfiguring the optical switches, it will be possible to reconfigure the network
topology interconnecting the different optical nodes.



(a) UC Davis Campus Research (b) CalRen-XD/HPR and  (c) ESnet (d) Internet 2 and
Network and Science DMZ | CcO othenGlobg_char[,le[g,,

Mrak e =
Kemper T 96sm/

i .
Telecom~” 48 144sm -
T : \ —144sm ™
RecHall  96sm/ | S8/ gq  OBsm/ e
6 /Kerr 4gmm | 48mm gmm 48MM adsm

7/ AOB4
West Campus
/3 Antenna Farm

H 96sm/ n 144sm
f 48mm
10 south Campus fagsm  985M/ 963m/ "~ 96sm/ | 96sm/
111 Research Park” A8mm_4gmm  48mm | 48mm
\ 144sm
. [l sy | 4]

W oR W N e

\\ “4dsm 14dem 48mm
3

o Backbone Fiber Topology
e atucpavis

Figure 12(a) UC Davis Campus Fiber Infrastructure with ~144 fiber strands. (b) CalRen-XD and COTN network,
(c) ESnet network. (d) Internet2 and other global networks.

This demo showcased a software-defined multi-domain networks from UCD campus to
CENIC to ESNet. For the CENIC, the COTN testbed is used to connect UCD campus and ESNet
OpenFlow testbed.

Figure 13 shows the control plane framework of a broker-based multi-domain system which
can provide effective resource management for the multi-domain testned. The framework consists
of a centralized broker and several OpenFlow controllers (OF-Cs) that each attaches to several
OpenFlow agents (OF-AGs) directly.

The broker functions as the first level “brain” of the framework, and it controls all the
domains. Each domain has a centralized OF-C which functions as the second level “brain”, and it
controls all the data plane equipment in its domain. The OF-AGs are used to configure the data
plane equipment it attached, and each OF-AG talks with its OF-C using OpenFlow protocol.

We proposed a broker protocol to enable communication between broker and OF-C. The
proposed protocol includes 4 kinds of messages, they are Broker-Request, Broker-Assign, Broker-
Reply, Broker-Confirm messages. In our demo, the Broker and OF-C are implemented with the
POX platform, and the OF-AG is programmed based on the Open-vSwitch (OVS) running on

Linux.
e 9 Broker-Request
Broker
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o Broker-Reply

6 Broker-Confirm
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Figure 13 control plane framework of a broker-based multi-domain system




Next, we will explain how a multi-domain request is served in this framework.

Step1: The OF-AG for a date plane equipment forwards a request for client traffic to its OF-C
using the Packet-In message.

Step2: The OF-C receives the Packet-In message, and forwards a Broker-Request message to
the broker.

Step3: The broker receives the Broker-Request message, decides the domains along the
routing path according to the request, and then sends Broker-Assign messages to the OF-Cs in
corresponding domains.

Step4: Each OF-C receives the Broker-Assign message, then calculates a routing path
scheme in its own domain, and then forwards a Broker-Reply message to the broker.

Step5: The broker receives all the Broker-Reply messages from the corresponding domains,
if all the domains have feasible schemes; it sends Broker-Confirm messages to the OF-Cs.

Step6: After receiving Broker-Confirm messages, the OF-Cs send Flow-Mod messages to the
corresponding OF-AGs to setup the path.

Broker-based Inter-domain control framework
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Figure 14 Multi-domain UCD-COTN-ESNet network testbed for GEC’20 demo

The details for the multi-domain UCD-COTN-ESNet network testbed for the GEC’20 demo
is shown in Figure 14. The broker-based control plane is deployed to set up an end-to-end path
across UCD campus, COTN and ESNet for the bi-directional traffic between Host 1 and Host 2.
Figure 15 and Figure 16 show the Wireshark captures from broker and POX1 (POX of domainl),
respectively. From the Figure 16 we can see that the control plane processing latency to setup a
path is around 4.73 seconds. Figure 17 and Figure 18 are the Wireshark capture of the Flow Mod
messages to the COTN and ESNet OpenFlow switches respectively. It can be seen that, to enable
the data transmission, the flow entries need to match the input port and input VLAN, and set
correct output ports and output VLAN in the action field. This demo verified GENI multi-domain
capabilities. However, we observed that the control plane processing latency to create an inter-
domain path is long, which is the major limitation for the GENI multi-domain networks.
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Figure 15 Wireshark capture from broker
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Figure 16 Wireshark capture from POX1
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Figure 17 Flow entry to the COTN OpenFlow switch
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Figure 18 Flow entry to the ESNet OpenFlow switch

As requested, we summarize the key steps and operations to show how to repeat the
framework:
(1)Build the testbed
Step1: Change the parameters of Broker:
Edit: pox/ext/broker server.py:
IP address -> broker’s IP address
Step2: Change the parameters of POX:
Edit: pox/ext/broker client.py:
IP address -> broker’s IP address
Step3: Change the parameters of OVS / OpenFlow switch
Command:
sudo ovs-vsctl add-br br0
sudo ifconfig br0 up
sudo ovs-vsctl set-controller br0 tcp:xxx.xxx.xxx.xxx:6633 (xxx is its POX’s IP
address)
(2) Repeat the experiment
Step1: Broker
cd pox
./pox.py broker server broker brain(2
Step2: POX
cd pox
./pox.py broker client multidomain01
Step3: OVS
cd swl
sudo ./sop 3
Step4: Wireshark
For Broker: (capture from ethQ)
cd wireshark-1.6.7
sudo ./wireshark
filter: broker
For POX: (capture from eth0)



cd wireshark-1.6.7
sudo ./wireshark
filter: of or broker
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F. Other Contributions and Future Plans

In this section, we briefly summarize our recent works and future plans for GEC’21 demo.
In GEC’21, we will showcase the intelligent traffic inference. We will implement a prototype of
an intelligent SDN based traffic (de)aggregation and measurement paradigm (iSTAMP), which
leverages OpenFlow to dynamically partition TCAM entries of a switch/router into two parts. In
the first part, a set of incoming flows are optimally aggregated to provide well-compressed
aggregated flow measurements that can lead to the best estimation accuracy via network inference
process. The second portion of TCAM entries are dedicated to track/measure the most rewarding
flows (defined as flows with the highest impact on the ultimate monitoring application
performance) to provide accurate per-flow measurements. These flows are selected and "stamped"
as important (or rewarding from monitor's perspective) using an intelligent Multi-Armed Bandit
(MAB) based algorithm. In our experiments, we will consider two network topologies, Data
Center Network and GEANT Network, and use real traces from Abilene, Geant and Data Center.

Recently, we designed the network traffic measurement demo in detail, and we also
implemented the iISTAMP (refer previous progress report for the introduction for iSTAMP) traffic
measurement framework and tested most of the software codes in a HP2920 OpenFlow switch. In
this report, we will first introduce the network monitoring demo in the next GENI meeting
(GEC’21), and then we will introduce the progress we have made for the demo.
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Figure 19. The architecture of the network monitoring demo
i) Network monitoring demo introduction

In this demo, we would like to show how to utilize the traffic management flexibility of
Openflow switch to improve the per-flow size measurement accuracy. Figure 19 shows the
architecture of the Demo. This Demo mainly has three components: 1) the traffic generators; 2)
the SDN consists of Openflow enabled switches; and 3) the OpenFlow controller.

The traffic generators are used to generate traffic flows that will be measured at the SDN
switches. To simulate the real network environment, the traffic generators replay the traffic flows
according the traffic trace collected in GEANT network. There are 529 aggregated flows in
GEANT. So we use several traffic generators to replay the 529 flows, and each of the traffic
generators replays a portion of the flows.

We use the PoX as the OpenFlow controller. Firstly, the controller computes the routing
tables and installs the routing tables in the TCAMS of the OpenFlow switches. Then the controller
updates the measurement rules in the TCAMS of the OpenFlow switches for the k largest flows
passing the OpenFlow switches at the beginning of each measurement interval. These largest
flows will be selected for per-flow monitoring using k TCAM entries. The remaining flows are
aggregated based on routing rules and hence only aggregate statistics are available. At last, the
controller collects the counter statistics of the TCAM entries, and uses these statistics to
estimate/infer the sizes for all flows. The estimated per-flow size and the real per-flow size will be
displayed on the monitor.



The OpenFlow switches forward the packets according to the routing table installed in its
TCAM. When the OpenFlow switches receive the status request, they send the statistics of their
flow entries to the OpenFlow controller.

ii) The current progress

We have completed the programming for the OpenFlow controller, i.e., the measurement
framework of iISTAMP. In order to test the codes, we implemented a simple traffic generator,
which generates random traffic as shown in Figure 20. Currently, most of the software codes
running on the controller have been test by using a HP2920 OpenFlow switch and a simple traffic
generator. We are programming and testing the traffic generator now.
@ Transmission

Server

Receive Rate 36.90625 kbps

Server IP:

Server Port: "~ W
Close

Client
Local IP: = Dst IP: Send Mode: i
Local Port: !~ Dst Port: minRate: maxRate: Interval: (s)

Stop

Figure 20 The simple traffic generator

In the next step, we will mainly focus on the following work.
(1) Test the traffic generator;
) Test the iISTAMP by using the traffic generator, which replays the flows in GEANT
network;
3) Implement a graphical interface to show the measurement results;
4) Directly, implement the optimization framework on the controller.



