
MultiSense: Fine-grained Multiplexing for Steerable Sensor Networks
Navin K. Sharma, David E. Irwin, and Prashant J. Shenoy

University of Massachusetts, Amherst
{nksharma,irwin,shenoy}@cs.umass.edu

Abstract
Steerable sensors, such as pan-tilt-zoom cameras and
weather radars, expose programmable actuators to appli-
cations, which steer them to dictate the type, quality, and
quantity of data they collect. Applications with different
goals steer these sensors in different directions. Despite
being expensive to deploy and maintain, existing steer-
able sensor networks allow only a single application to
control them due to the slow speed of their mechanical
actuators. To address the problem, we designed Mul-
tiSense, which enables fine-grained multiplexing by (i)
exposing a virtual sensor to each application and (ii) op-
timizing the time to context-switch between virtual sen-
sors and satisfy requests.

We implement MultiSense in Xen and explore how
well proportional-share scheduling, along with exten-
sions for state restoration, request batching and merg-
ing, and anticipatory scheduling, satisfies the unique re-
quirements of steerable sensors. We present experiments
for pan-tilt-zoom cameras and weather radars that show
MultiSense efficiently isolates the performance of virtual
sensors, allowing concurrent applications to satisfy con-
flicting goals. As one example, we enable a tracking ap-
plication to photograph an object moving at nearly 3 mph
every 23 ft along its trajectory at a distance of 300 ft,
while supporting a security application that photographs
a fixed point every 3 seconds.

1 Introduction
Steerable sensor networks allow applications to steer me-
chanical actuators to control the type, quality, and quan-
tity of data they collect. For example, researchers are
prototyping the use of steerable weather radars to im-
prove weather prediction and fill coverage gaps in the ex-
isting NEXRAD system [15]. The U.S. Border Patrol is
also deploying networks of pan-tilt-zoom (PTZ) cameras
to continuously monitor the northern border for smug-
glers [13], and as part of a “virtual fence” on the southern
border [5]. While this type of networked cyber-physical
system is emerging as a critical piece of society’s in-
frastructure, the deployments are expensive. The hard-
ware cost for the steerable radar we consider is nearly
$300,000, not including infrastructure, operational, or la-
bor costs, and the cost for the 20-mile prototype of the
Border Patrol’s “virtual fence” is over $20 million. A

key limitation of these systems is that they are not de-
signed for multiplexing. Despite their expense, only a
single user, or application, is able to control them.

Enabling fine-grained multiplexing is an important
step in providing broader access to use and experiment
with these exclusive systems. As a simple example,
consider using a PTZ camera for both monitoring and
surveillance. The monitoring application continuously
scans each road at an intersection in a fixed pattern, while
the surveillance application intermittently steers the cam-
era to track suspicious vehicles moving through its field
of view. Each application alters the setting of three dis-
tinct actuators—pan, tilt, and zoom—to satisfy its goals.
While simple multiplexing approaches, which sched-
ule control in a coarse-grained batch fashion, are possi-
ble [2], such reservations prevent the fine-grained multi-
tasking required for this example, and force a choice be-
tween either monitoring the intersection or tracking the
suspicious vehicle during each coarse-grained time pe-
riod.

Although multiplexing has been well-studied for
CPUs and other peripheral devices, such as disks and
NICs, steerable sensors present new challenges because
they differ in their physical attributes, application re-
quirements, and workload characteristics.

• Physical Attributes. Mechanically steerable sen-
sors are both slow and stateful. Since steering la-
tencies are on the order of seconds, the most con-
tentious resource is control of the sensor, and not
the aggregate bandwidth of sensed data or the to-
tal number of I/Os. Further, since each actua-
tion changes a sensor’s physical state, its current
state determines the time to transition to a new
state, which results in long, highly variable context-
switch times.

• Application Requirements. Applications control a
sensor’s actuators directly to drive data collection—
often based on past observations. Since real-world
events dictate steering behavior, applications may
have timeliness constraints, either to sense data at
specific locations, e.g., to track a moving object, or
to coordinate steering among multiple sensors, e.g.,
to sense a fixed point from multiple angles.

• Workload Characteristics. Since sensing appli-
cations observe real-world events, we cannot make

assumptions about the spatial or temporal locality
of actuation requests—important events may occur
anywhere at anytime. However, we can take advan-
tage of locality if it exists. Since one or more appli-
cations may track similar events, there are opportu-
nities to merge partial overlaps among requests.

In general, fine-grained multiplexing benefits any ap-
plication that values continuous access to sensor data
and is willing to tolerate a lower resolution than possi-
ble with a dedicated sensor. While the deployment cost
of steerable sensors limits their number, it also magni-
fies the potential benefits of fine-grained sharing. To re-
alize this potential, we designed MultiSense, a system
for fine-grained multiplexing—at the level of individual
actuations—of steerable sensor networks. MultiSense
combines a proportional-share scheduler with a range of
extensions to multiplex virtual sensors on a single phys-
ical sensor.

While sensor multiplexing could be implemented in
numerous ways, MultiSense’s implementation integrates
with a virtualization platform to expose a virtual sensor
(vsensor) to each application that has the same interface
as the physical sensor. The goal is to extend the bound-
ary of VM performance isolation to include sensors, in
addition to other compute resources. We discuss the mo-
tivation behind this implementation choice more in Sec-
tion 2. Our hypothesis is that steerable sensors are capa-
ble of sensing multiple real-world events, such as a per-
son walking, a thunderstorm, or a tornado, conforming
to different sensing modalities. In designing MultiSense,
this paper makes contributions in three areas.
Multiplexing Steerable Sensors. MultiSense employs
a finite state machine to track each vsensor’s state as
it moves, and uses a request emulation mechanism to
buffer actuations until a sense request arrives—similar to
a disk that buffers write requests until a read request ar-
rives. We show how MultiSense uses these mechanisms
to reduce the significant state restoration overheads in-
curred from context-switching between vsensors.
Proportional-share Adaptation and Extensions. We
adapt Start-time Fair Queuing [6] to allocate shares of a
steerable sensor’s time to vsensors, and evaluate a range
of extensions and their effect on performance, includ-
ing request batching, request merging, and anticipatory
scheduling. Our experiments quantify the level of SFQ’s
isolation and the benefit of each extension.
Implementation and Experimentation. We implement
MultiSense in Xen and use it to study two different ex-
amples of steerable sensors: a PTZ camera and a steer-
able weather radar. We present a case study for both
sensors using multiple modalities, including continuous
scanning, object tracking, single fixed-point sensing, and
multi-sensor fixed-point sensing. Our case studies show
that MultiSense is able to satisfy concurrent applications

using our example sensors. As one example, we enable
a tracking application to photograph an object every 23
ft moving at nearly 3 mph along its trajectory at a dis-
tance of 300 ft, while supporting a security application
that photographs a fixed point every 3 seconds.

In Section 2, we motivate our use of vsensors and
present background on sensor multiplexing. Section 3
dicusses MultiSense’s basic design, while Section 4 out-
lines our adaptation of proportional-share and its exten-
sions. Section 5 and Section 6 present MultiSense’s im-
plementation and evaluation using cameras and radars.
Finally, Section 7 puts MultiSense in context with related
work, and Section 8 concludes.

2 Background
We first motivate the use of vsensors as MultiSense’s pri-
mary abstraction. We then define a system model that
guides our work and highlights the challenges of multi-
plexing steerable sensors.

2.1 Approach
We chose a virtualization approach for MultiSense’s im-
plementation to take advantage of the performance and
fault isolation capabilities present in modern virtualiza-
tion platforms. Our goal is to lower the barrier for experi-
menting with expensive steerable sensor networks by us-
ing MultiSense in a 4-node testbed we have built, named
ViSE 1, that includes PTZ cameras, radars, and weather
stations. Virtual machines (VMs) serve to isolate both
the testbed’s control plane from its users, and its users
from each other. Testbed users, or programmatic con-
trollers acting on their behalf, request VMs bound to not
only a sliver of the node’s CPU, memory, storage, and
bandwidth, but also to one or more attached sensors.

Importantly, the approach allows users to experiment
with all aspects of building this type of non-traditional
sensor system from the ground up. For instance, ViSE’s
nodes communicate over long-distance (10 km) 802.11b
links that do not have enough bandwidth to transmit all
of the data a camera or radar produces, requiring users to
either shift some of their computation into the network
or prioritize data transmissions (see [9]). ViSE simply
allocates the low-level computing, communication, and
sensing resources, and leaves users to experiment with
how to best use them.

The testbed is part of GENI, so other goals include
linking its nodes and sensors with other substrates us-
ing one of GENI’s control frameworks. Since our goals
are broader than just studying the sensor multiplexing
problem, we chose not to implement MultiSense at a
higher level of the software stack, such as a C library or

1See http://geni.cs.umass.edu/vise. ViSE stands for
Virtualized Sensing Environment.

Pa
Pbpa

n Ca Cb

time

θa

θb

Pa

Pb

pa
n

Ca

CbR

R

time

R=restore

Pa Pb

pa
n

m
ov

em
en

t

Ca

Cb

R

time

Pa
2

Ca
2

Pa Pb

pa
n

m
ov

em
en

t

Ca

Cb

time

Pa
2

Ca
2

(i) with restore (ii) optimized

(a) Naı̈ve interleaving of PaPbCaCb

yields incorrect results.
(b) Correct interleaving of PaPbCaCb

with state restorations.
(c) Optimizing state restoration costs.

Figure 1: Examples showing why request interleaving is challenging for steerable sensors.

network-accessible API, although our low-level imple-
mentation does allow testbed users the freedom to layer
higher level abstractions on top of it. Ultimately, the
problem MultiSense addresses is independent of the spe-
cific layer of the implementation.

We also note that while each VM exposes a local in-
terface to its vsensors, our testbed assumes the use of a
distributed application or experiment controller that co-
ordinates control of vsensors on different nodes. Thus,
the application logic for controlling the sensor may re-
side within an individual VM—when there is no need for
coordination—or within an external controller—when
there is a need for coordination. Since the nodes use x86-
class processors connected to the power grid, they do not
have the energy or computing constraints that discourage
placing application logic on the sensor node, itself.

2.2 System Model
Each steerable sensor exposes one or more pro-
grammable actuators that applications control to steer
it, and attaches to a node with local processing, storage
and communication capabilities that is capable of run-
ning modern VMMs. MultiSense multiplexes requests
to steer the sensor across multiple applications, each ex-
ecuting in their own VM on each node. We model each
application as a stream of actuation requests to steer the
sensor, followed by one or more sense requests to col-
lect data. Thus, an application’s request pattern takes
the form: [A1A2 . . . AnS1S2 . . . Sm]+, n ≥ 0, m > 0,
where Ai and Si denote an individual actuation and sens-
ing request, respectively. Each actuation Ai takes time ti
to steer the sensor to the specified setting along a single
dimension, where ti is dependent on the actuator’s speed
and its current setting. We assume an actuator’s speed
is relatively constant, although there may be some me-
chanical jitter as we show in Section 7. Note that sense
requests Si may specify scans that also change the setting
of one or more actuators

Our model matches low-level sensing device inter-
faces, where each actuation request, Ai, specifies a
movement of the sensor along a single dimension, e.g.,
tilt, and movement in multiple dimensions, e.g., pan, tilt,
and zoom, requires multiple actuation requests. For in-
stance, a monitoring application for a PTZ camera might

issue a repeating pattern of pan and tilt requests, followed
by one or more capture requests to retrieve images, while
a monitoring application for a steerable weather radar
might tilt the antenna to the proper elevation and issue
a repeating pattern of 360◦ sector scans. We assume that
actuation and sense requests from different applications
are independent of one another, although a scheduler
may take advantage of partial overlaps in sector scans. To
enable fine-grained multiplexing, MultiSense interleaves
requests from concurrent applications on the underlying
physical sensor.

2.3 Challenges
We highlight challenges to multiplexing steerable sen-
sors using a simple example with two users—Alice and
Bob—sharing control of a single PTZ camera. The chal-
lenges for steerable weather radars are similar. Assume
that Alice first issues a pan, followed by a capture, de-
noted by PaCa while Bob issues a similar sequence
PbCb, where the subscripts a and b denote Alice and
Bob, respectively. Consider a naı̈ve schedule that inter-
leaves these requests in the following order on the cam-
era: PaPbCaCb. In this case, the camera pans to position
θa, as requested by Alice, and then pans to a position θb,
as requested by Bob (see Figure 1(a)).

As a result of the ordering, executing Alice’s capture
request Ca next results in an inconsistent picture, since
the camera’s lens is at pan position θb when Alice ex-
pects the camera’s lens to be at pan position θa. Since
the camera is stateful, Bob’s actuation leaves the camera
in a different state than Alice left it. As a result, naı̈ve
time-slicing using time quanta is inappropriate, since Al-
ice and Bob would have no guarantee of the camera’s
state at the beginning of any time-slice. A straightfor-
ward solution is to restore Alice’s state before context-
switching back to her, similar to a CPU scheduler that
restores the state of a thread’s program counter and reg-
isters. However, unlike CPUs and other peripheral de-
vices, state restoration for mechanically steerable sensors
is slow, and can be more expensive than the execution
time of actuation requests.

For instance, the PTZ camera we use for our exper-
iments takes nearly 9 seconds to pan from 0◦ to 340◦,
nearly 4 seconds to tilt from 0◦ to 115◦, and over 2 sec-

vsensor1

unmodified
app 1

VM 1domain-0

device
driver

physical
sensor

VMM / hypervisor

vsensor2

VM 2

MultiSense
unmodified

app 2

Figure 2: MultiSense Architecture Overview

onds to zoom from 1x to 25x. Naı̈ve state restoration can
also exacerbate a sensor’s slowness by executing waste-
ful actuations. In our example, restoring Alice’s state to
position θa is wasteful, since it requires re-executing the
Pa pan request (Figure 1(b)). Better interleavings, such
as PaCaPbCb, still pose a problem for a naı̈ve strategy,
since it is often more efficient to steer the sensor directly
from θb to the position of Alice’s next request P 2

a , rather
than directly restoring her previous state (Figure 1(c)).

This simple example motivates two basic elements of
our approach. First, we maintain the correct vsensor state
for each user to ensure their sensing requests are consis-
tent. Second, we automatically group together requests
of the form A∗

i Si to prevent wasteful actuations, since in-
terleaving actuation requests from other vsensors within
a group results in unnecessary state restoration. De-
spite these elements, context-switches between groups
inevitably require some state restoration, making them
inherently slow. Since MultiSense does not know each
user’s request pattern in advance, these context-switch
times are also unpredictable.

Users will notice unpredictable context-switch times
if they have strict timeliness requirements, and will per-
ceive them as changes in vsensor actuation speed. For
example, rather than maintaining a stable vsensor speed
of v degrees/second, an application may observe a speed
of v

2 degrees per second for one sensing request, and then
a speed of 2v for the subsequent one. One option for re-
ducing this variability is to require all applications to re-
veal their desired request pattern and timeliness require-
ments at allocation time, and then decide whether to in-
sert the request pattern into a fixed, repeating schedule of
actuator movements, similar to Rialto’s approach to hard
real-time CPU scheduling [8]. This type of scheduling
is difficult even on a dedicated sensor since, similar to a
disk head, the mechanical steering mechanism has inher-
ent jitter, which we show in Section 6.2.2.

Real-time scheduling similar to Rialto is also problem-
atic because sensing applications generally do not know
their request patterns or requirements in advance, since
real-world events may occur anywhere at anytime. Ul-
timately, some uncertainty is inherent if we allow each

S2 A5 A4 A3 S1 A2 A1

S4A3Traffic
Monitoring

vsensor

Vehicle
Tracking

S4 A3 S3 A2 S2 A1 S1

VM

VM vsensor

S1S2A1S3A2

S1A2A1S2A5A4A3

Step 2: Interleave
Request Groups

Step 1: Construct
Request Groups

S1S1A2A1S2A1S3A2

raw request stream

prop-share
scheduler

FSM state
tracking

psensor

Figure 3: Constructing and interleaving request groups.

application the freedom to determine what actuation re-
quests to issue and when to issue them. As a result, in our
design of MultiSense, we explore how well proportional-
share scheduling and its extensions isolate vsensor per-
formance and meet the practical timeliness requirements
of representative applications. This type of share-based
scheduling is appropriate for allocating a resource whose
supply varies over time. Since the time the physical sen-
sor spends context-switching is dependent on the request
patterns of its applications, the time available to control
the sensor has the effect of a resource with varying sup-
ply.

3 MultiSense Design
MultiSense extends traditional VMMs by adding sup-
port to multiplex steerable sensors using a virtual sen-
sor abstraction. A vsensor behaves like a slower ver-
sion of the physical sensor that has identical function-
ality: an application designed to interface with the phys-
ical sensor should also interface with the corresponding
vsensor. MultiSense resides in the VMM or a privileged
control domain—Domain-0 in Xen—and interleaves re-
quests from each vsensor on the underlying physical sen-
sor, as shown in Figure 2. We separate MultiSense’s
functions into three categories described below. The goal
of this decomposition is to reduce context-switch over-
heads while preserving a level of performance isolation.

1. State Restoration. MultiSense tracks the state of
the physical sensor and each vsensor using finite
state machines (FSM), and restores state whenever
it detects a state mismatch at context-switch time.

2. Request Groups. MultiSense prevents waste-
ful context-switches by automatically grouping to-
gether requests from each vsensor of the form A∗

i Si

and atomically issuing them to the sensor.
3. Scheduling. MultiSense employs a proportional-

share scheduler and extensions at the granularity of
request groups to determine an ordering that bal-
ances fair access to the sensor with its efficient use.

We describe MultiSense’s FSMs, and their use in
restoring state and inferring atomic request groups in this
section, and discuss scheduling in Section 4. Finite state
machines track the state of each physical and virtual sen-

sor, where a state is an n-tuple that represents a specific
setting for each of n actuators, and each state transition
has a cost that denotes the time the sensor takes to com-
plete the transition. We use the term actuator broadly
to include both mechanical actuators, as well as non-
mechanical settings of interest. For instance, a PTZ cam-
era’s state includes both the pan, tilt, and zoom position
of its lens, as well as the image resolution and shutter
speed settings. Pan and tilt are true mechanical actu-
ators that require a motor to alter, while zoom, shutter
speed, and image resolution are settings of the lens, cam-
era, and CMOS sensor, respectively. Likewise, steerable
radars have both mechanical, e.g. scanning, and non-
mechanical, e.g. pulse frequency, actuators. Each actu-
ation modifies the state of one or more of these param-
eters, causing the sensor to transition from one state to
another.

3.1 State Restoration
Whenever MultiSense context-switches from one vsen-
sor to another, it compares the state of the currently
executing vsensor state machine (VSM) and the phys-
ical sensor’s state machine (PSM). As with a CPU,
if there is a state mismatch, MultiSense can perform
state restoration by automatically issuing requests for
each out-of-sync state parameter to synchronize the
vsensor’s state with that of the physical sensor. As
an example, assume that Alice’s VSM is in state
pan = θa tilt = φa zoom = Za, and the PSM is in

state pan = θb tilt = φa zoom = Zb. The two state
machines are out-of-sync along the pan and zoom dimen-
sions but in-sync along the tilt dimension. MultiSense
synchronizes Alice’s VSM state with the PSM by issu-
ing a pan request to move the camera from θb to θa and
a zoom request to change the zoom setting from Zb to
Za. No synchronization action is necessary along the tilt
dimension.

We refer to this simple state restoration strategy as the
eager strategy, since it eagerly synchronizes states with a
past state on every context-switch. For steerable sensors,
the eager strategy imposes a higher overhead than neces-
sary, since it ignores actuation requests queued by each
vsensor. Recall the example from Section 2.3, where Al-
ice issues PaCa followed by P 2

a C2
a , and the Pa request

causes the camera to move to pan position θa. Now sup-
pose that Bob’s request PbCb executes next, and the cam-
era pans to position θb. Before executing Alice’s next re-
quest, the eager strategy restores the pan state of the cam-
era by moving it from the current position θb to position
θa. As depicted in Figure 1(c), the approach is wasteful,
since Alice’s queued pan request P 2

a intends to pan to
position θ2

a, making it more efficient to move the camera
directly from θb to θ2

a. To see why, suppose θb = 50◦,
θa = 30◦ and θ2

a = 75◦. Eager restoration pans from

pan=α
tilt=β

zoom=δ

pan=θ
tilt=β

zoom=δ

pan=θ
tilt=Φ

zoom=δ

deferred
request
queue

VSM

pan θ

pan

tilt Φ

capture

flush

pan
tilt

capture
request
group

pan
tilt

psensor

Figure 4: Request emulation and deriving request
groups.

50◦ → 30◦ → 75◦ = 65◦, while a direct pan from 50◦

to 75◦ requires only a 25◦ movement. For the PTZ cam-
era we use, an additional 40◦ pan movement wastes more
than 1 second.

MultiSense avoids this overhead using a lookahead
strategy that does not restore state parameters that
queued vsensor acutations will subsequently modify. For
example, let V SMprev denote the VSM state prior to a
context-switch, and let V SMnext denote the VSM state
that would result from executing requests queued after
the last context-switch. Now let V SMprev ∩ V SMnext

denote the set of state parameters not modified by these
requests. The lookahead strategy only restores the states
in V SMprev∩V SMnext. In the Alice and Bob example,
V SMprev∩V SMnext includes the parameters zoom and
tilt, but not pan, since Alice’s queued request will modify
the pan parameter.

3.2 Request Groups
To eliminate wasteful state restoration overheads, Multi-
Sense automatically groups requests from each vsensor
that the physical sensor should execute atomically. Each
group includes a sequence of zero or more actuation re-
quests, followed by a sense request from a single vsensor.
Request groups prevent interference from the actuation
requests of competing vsensors. However, since sensing
and actuation requests are often blocking calls executed
synchronously on the underlying physical sensor, vsen-
sors only see a single request at a time, which does not
permit grouping. To group requests, MultiSense enables
asynchronous execution of blocking requests by emulat-
ing the execution of requests on the vsensor and deferring
their actual execution on the physical sensor.

Request emulation allows the vsensor to behave as if
the request actually executed on the sensor, allowing the
blocking call to complete and the vsensor to continue ex-
ecution. The vsensor’s VSM tracks the state changes that
result from any emulated requests, and defers their exe-
cution until the vsensor context-switches in. To ensure
correctness, we only emulate actuation requests, since
they do not return data that alters an application’s con-
trol flow. Since sense requests return real-world data,

MultiSense cannot emulate them, but must execute them
using the physical sensor in the appropriate state to re-
turn a correct result. When a sense request arrives, Mul-
tiSense flushes the queue of deferred actuation requests
to its scheduler, which then schedules the request group
as a single atomic unit. The sense request blocks until
the result returns.

As an example, consider how Alice’s virtual camera
maps onto a physical camera. Assume that Alice issues
an actuation request Pa to pan to position θa. Request
emulation triggers a VSM state transition to a new pan
position θa, as shown in Figure 4. The figure also shows
that MultiSense queues the request for deferred execu-
tion. Once the blocking pan completes, Alice’s applica-
tion continues execution and issues an actuation request
to tilt to position φa, causing request emulation to con-
tinue by triggering another state transition in the VSM.
Finally, Alice issues a capture request Ca, which Mul-
tiSense groups with the two pending actuation requests
in the vsensor’s queue and flushes to the scheduler for
execution on the physical sensor. Alice blocks until the
group executes and returns the appropriate image. One
consequence of request emulation is that applications do
not perceive errors from actuations. We report any errors
as a result of actuations when its corresponding sense
request executes, similar to a file system that defers re-
porting disk errors until it empties the buffer cache.

4 Proportional-share for Steerable Sensors
MultiSense flushes request groups to a proportional-
share scheduler that decides when to execute them. We
adapt the standard Start-time Fair Queuing (SFQ) algo-
rithm, originally designed for NICs and CPUs, to sched-
ule steerable sensors by setting the length of a request
group equal to the time the group would take to execute
on the dedicated sensor [6]. As with other proportional-
share schedulers, SFQ associates a weight wi with each
vsensor and allocates wi/

∑
k wk of the physical sensor’s

time to vsensor i. Lowering a vsensor’s weight assign-
ment affects its performance by slowing down its actua-
tion speed. In work-conserving mode, actuation speeds
may also become faster if any vsensor is not using its
share by issuing requests. An ideal fair scheduler guar-
antees that over any time interval [t1, t2], the service
received by any two vsensors i and j is in proportion
to their weights, assuming continuously backlogged re-
quests during the interval. Thus, Wi(t1,t2)

Wj(t1,t2)
= wi

wj
, where

Wi and Wj denote the total time the dedicated physical
sensor consumes executing requests from vsensor i and
vsensor j, respectively, during the interval.

The ideal is only possible if the physical sensor is able
to divide each actuation into infinitesimally small time
units. Since actuations are of variable length and Multi-
Sense schedules at the granularity of request groups, en-

forcing the ideal is not possible. We chose SFQ because
it bounds the resulting unfairness due to this discrete
granularity by ensuring that |Wi(t1,t2)

wi
− Wj(t1,t2)

wj
| ≤

(lmax
i

wi
+ lmax

j

wj
) for all intervals [t1, t2], where lmax

i is
the maximum length of a request group from vsensor i.
Intuitively, this bound is a function of the largest possi-
ble request group, which for our PTZ camera is an actu-
ation, from pan = −170◦ tilt = −90◦ zoom = 1x to
pan = 170◦ tilt = 25◦ zoom = 25x. Since this worst-

case scenario takes nearly 16 seconds for our camera, one
goal of our evaluation is to explore performance in the
common, rather than the worst, case for representative
applications. SFQ also raises other issues when co-opted
for steerable sensors. We discuss these issues below and
present extensions to mitigate them.

4.1 Context-switch Costs
SFQ ignores the actuation costs from context-switching
between request groups, causing significant overheads.
As an example, consider three users Alice, Bob and
Carol sharing a PTZ camera. Assume that the camera is
currently at position 25◦, and Alice, Bob and Carol have
start tags of 10, 11 and 12, respectively, when Alice is-
sues a pan request for position 30◦ and Bob and Carol is-
sue pan requests for positions 75◦ and 40◦. SFQ services
these requests in order of the start tags—Alice, then Bob,
and finally Carol—and triggers pans from 25◦ → 30◦ →
75◦ → 40◦ = 85◦. However, since Alice and Carol’s
requests are close to each other, servicing the requests in
the order Alice, then Carol, and finally Bob lowers the
overhead to 25◦ → 30◦ → 45◦ → 75◦ = 50◦. For our
PTZ camera, this results in nearly a 1 second reduction
in overhead. We address this issue by extending SFQ to
select the k pending requests with the smallest start tags,
one from each vsensor, instead of selecting only the re-
quest with the minimum start tag.

Given a batch of k requests, we reorder them to min-
imize the physical sensor’s total actuation time. In our
example, this strategy selects the more efficient Alice →
Carol → Bob ordering. For a single actuator, the batch-
ing strategy is similar to proportional-share disk sched-
ulers that use an elevator algorithm to reorder batched
requests [3]. Since our sensors have multiple actuators,
minimizing actuation time is an instance of the NP-hard
Traveling Salesman Problem. We use a greedy heuristic
that always executes the next closest request in the batch.
For small values of k, a brute force search that tries all
permutations is also feasible. Introducing the parameter
k defines a new tradeoff: the higher the value of k the
more efficient, but less fair, the schedule. In Section 6.2,
we show that a value of k that is close to half the num-
ber of vsensors N in the system strikes a good balance
between fairness and efficiency for our examples.

front-end
driver

app 1

VM 1dom-0

back-end
driver

device
driver

physical
sensor

Xen hypervisor
XenBus

front-end
driver

app 2

VM 2

user-level daemon

Figure 5: MultiSense’s implementation uses Xen’s split-driver
framework to serve as a communication channel, and a user-
level daemon in Domain-0 to maintain vsensor VSMs and exe-
cute scheduling policies. Each request passes from application
→ front-end driver → back-end driver → daemon → device.

4.2 Synchronous I/O
Applications, such as object tracking, must execute sense
requests synchronously if they use the result to determine
their next actuation. Proportional-share schedulers, such
as SFQ, that track progress and make decisions using vir-
tual clocks do not handle synchronous requests well be-
cause of deceptive idleness [7]. Synchronous requests
prevent an application from queuing up additional re-
quests for the scheduler to consider, which may cause
the scheduler to pre-maturely context-switch after a syn-
chronous request completes, but before the application is
able to issue additional requests. Anticipatory schedul-
ing addresses the problem by pausing for a period after
the execution of a synchronous request, giving the cur-
rently executing application a small time window to issue
subsequent requests for the scheduler to consider [7].

However, steerable sensors violate the assumption of
anticipatory schedulers that requests from a single appli-
cation always have similar degrees of spatial and tem-
poral locality. Unlike disks, which control the layout
of their own data, we cannot always assume that real-
world events will be close to each other in space or
time. As a result, while anticipatory scheduling does
achieve better fairness properties, by preventing the vir-
tual clocks of applications continuously issuing small re-
quests from lagging behind, in many cases it actually de-
creases, rather than increases, performance for steerable
sensors. We evaluate the impact of anticipatory schedul-
ing and synchronous requests in Section 6.2.2.

4.3 Overlapping Requests
If concurrent applications are interested in similar events,
our scheduler takes advantage of the spatial and tempo-
ral locality between the applications. This phenomenon
is most prevalent for steerable weather radars that sense
by performing sector scans of the atmosphere at specific
elevations. During a severe weather event, it is likely that
scanning algorithms run by different agencies or scien-

From → To Latency Percentage
application → front-end 0.24 µsecs 7.1x10−8

front-end → back-end 6.35 µsecs 1.9x10−4

back-end → listener 286 µsecs 8.51x10−3

listener → camera 274 µsecs 8.15x10−3

camera → listener 3.35 secs 99.7

listener → back-end 17 µsecs 5.1x10−4

back-end → front-end 27 µsecs 8.0x10−4

front-end → application 229 µsecs 6.8x10−3

total 3.36 secs 100

Table 1: Latency breakdown for a sample vsensor actuation of
the Sony PTZ camera in our Xen implementation. The domi-
nant factor in the request latency (> 99.7%) is the time to ac-
tuate the camera. Our implementation imposes comparatively
little overhead (< 0.3%).

tists will observe similar regions of the atmosphere. The
concept also applies to PTZ cameras that scan continu-
ous areas or capture bursts of activity.

To account for these partially overlapping requests,
our SFQ implementation merges multiple requests
within a batch of k according to a simple policy: if any
portion of the scans from two requests overlap the sched-
uler merges them and only executes the single merged
request. MultiSense uses the data collected from the
merged request to form the correct result for each indi-
vidual request and return it to the respective application.
If workloads exhibit a high level of overlap, the perfor-
mance gains from merging are significant, as we show in
Section 6.2.1.

5 Implementation
MultiSense integrates with XenLinux’s virtual device
framework. The sensors we study, which we describe in
next section, are character devices that transfer streams
of data serially to applications. In Linux, applications
typically interface with sensors through character device
files using the open, close, read, write, and ioctl system
calls. To support devices, Xen uses a split-driver ap-
proach that divides conventional driver functionality into
two halves: a front-end driver that runs in each VM and a
back-end driver that typically runs in Domain-0, a priv-
ileged management domain. Details of the split-driver
approach can be found in [1]. Figure 4.2 depicts Mul-
tiSense’s Xen implementation using a generic front-end
character driver that passes the front-end’s open, close,
read, write, and ioctl requests to the back-end driver,
which executes them and returns the response.

As with other character drivers, the front-end/back-
end communication channel supports multiple threads
to permit asynchronous interactions. In our current im-
plementation the back-end driver passes requests to a
user-level daemon running in Domain-0 using the back-

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6
 0

 1000

 2000

 3000

 4000

 5000

 6000

%
 C

PU
 u

til.
 o

f V
M

I/O
 R

at
e

@
 D

om
-0

 (K
B/

se
c)

No of Radars (+1 Camera)

Dom-0 CPU Util (%)
I/O Rate @ Dom-0 (KB/sec)

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6
 0

 200

 400

 600

 800

 1000

 1200

 1400

%
 C

PU
 u

til.
 o

f V
M

I/O
 R

at
e

@
 D

om
-0

 (K
B/

se
c)

No of Radars (+1 Camera)

Dom-0 CPU Util (%)
I/O Rate @ Dom-0 (KB/sec)

(a) No Actuation Costs (b) Includes Actuation Costs

Figure 6: Utilization of Domain-0’s 40% CPU share and I/O rate for radars with and without actuation costs. The number of
vsensors vary from 1 to 5, where the first vsensor is a PTZ camera and the remaining vsensors are radars.

end’s read and write system calls. This daemon in-
cludes the logic to maintain and restore state, group re-
quests, and schedule groups using a sensor’s conven-
tional application-level interface. Implementing Multi-
Sense at user-level has two advantages beyond simplify-
ing debugging. First, manufacturers often release binary-
only drivers for Linux that are only accessible from user-
level, necessitating user-level integration. Second, the
user-level daemon decouples our implementation from a
specific virtualization platform, allowing us to switch to
alternatives, e.g., Linux VServers, if necessary. Since the
dominant performance cost for steerable sensors is actua-
tion time and not data transfer, as we show in Section 5.2,
the overhead of moving data between kernel-space and
user-space is negligible. For sensors where data transfer
is the dominant cost, we could integrate the functions of
this daemon into the back-end driver.

MultiSense’s front-end/back-end drivers are reusable
with different types of sensors since they only serve as
a communication channel for requests. We use the same
pair for both the PTZ camera and the weather radar. The
user-level daemon maintains a vector and queue for each
vsensor that stores the current setting of its actuators and
its backlog of deferred actuation requests, respectively.
The daemon also manages VSMs and state restoration as
well as our extensions, such as request batching/merging
and anticipatory scheduling. When an actuation request
arrives, the daemon associates a start tag with it, places it
at the end of its vsensor’s queue, sends back a response,
and changes the actuator’s vector entry. When a sense
request arrives, the daemon batches it with any deferred
requests in order of their minimum start tag, assigns the
start tag of batch as the start tag of the sense request, and
flushes the batch to the common queue used by the SFQ
scheduler. As soon as k request batches arrive or time
t passes from the last scheduling opportunity, the sched-
uler reorders the request batches in the common queue
using our greedy heuristic and issues them to physical
sensor, as described in Section 3.2.

5.1 Example Sensors
We evaluate MultiSense for both PTZ cameras and steer-
able weather radars. We use the Sony SNC-RZ50N PTZ
Network Camera. Beyond the three actuators we focus
on, the camera has many non-obvious actuators, includ-
ing resolution setting, shutter speed, backlight compen-
sation, night vision, and electronic stabilization, that in-
fluence an image’s fidelity. The camera is capable of
panning between −170◦ and 170◦ and tilting between
−90◦ and 25◦ of center, while supporting 25 different
optical zoom settings (1x to 25x). The camera’s direct
drive motor allows control of pan and tilt increments as
small as 1/3◦. We benchmarked the speed of each of the
camera’s actuators independently. The camera is capable
of panning at 40◦/sec, tilting at 30◦/sec, and zooming at
12x/sec, although shorter movements are slower due to
the acceleration of the motor.

To study steerable weather radars, we developed an
emulator, written in Java, modeled after the experimen-
tal IP1 radar deployed on the UMass-Amherst campus.
The IP1 uses a direct-drive, high-torque azimuth posi-
tioner and linear actuator elevation positioner to reposi-
tion its antenna. The positioner is able to scan from 0◦ to
360◦ at a maximum speed of 120◦/sec, and change ele-
vation, e.g., tilt, from−2◦ to 30◦ at a maximum speed of
30◦/sec. The radar performs spiral scans and produces
data at a maximum of 3 kilobytes/degree when sampling.
Each actuation request specifies a start and stop position,
which includes the azimuth and elevation angles of the
antenna, for each scan. Our emulator imposes the nec-
essary delays and outputs the appropriate volume of data
for each request.

5.2 Benchmarks
Before evaluating MultiSense, we benchmark its imple-
mentation overhead. Our experiments run on Mac-Minis
with 1.83 Ghz Intel T5600 CPUs, 1GB RAM, and 80GB
SCSI disks, running version 3.2 of the Xen hypervisor
with Ubuntu Linux using kernel version 2.6.18.8-xen in

 0

 200

 400

 600

 800

 1000

 0 300 600 900 1200 1500 1800
 0

 500

 1000

 1500

 2000

Nu
m

be
r o

f R
eq

ue
st

s
(c

am
er

a)

Nu
m

be
r o

f R
eq

ue
st

s
(ra

da
r)

Time (seconds)

Lookahead (radar)
Lookahead (camera)

Eager (radar)
Eager (camera)

 0

 10

 20

 30

 40

 50

 60

 0 300 600 900 1200 1500 1800
 0

 1

 2

 3

 4

Ca
m

er
a

Re
qu

es
t L

at
en

cy
 (s

ec
s)

Ra
da

r R
eq

ue
st

 L
at

en
cy

 (s
ec

s)

Time (seconds)

Eager (radar)
Eager (camera)

Lookahead (radar)
Lookahead (camera)

(a) Number of Requests (b) Average Request Latency

Figure 7: The lookahead state restoration strategy outperforms the eager approach in our sample workloads. The number of
requests completed (a) is 3x more and the average latency to satisfy each request (b) is 3x less using the lookahead approach.

 0

 200

 400

 600

 800

 1000

 0 300 600 900 1200 1500 1800

Nu
m

be
r o

f R
eq

ue
st

s
(c

am
er

a)

Time (seconds)

Request Grouping
No Req. Grouping

Figure 8: Request grouping improves performance by a factor
of 2.

both Domain-0 and each guest VM. Each guest uses a
file-backed virtual block device to store its root file sys-
tem image. Using the camera, Table 1 reports the over-
head MultiSense imposes on a single vsensor actuation
request and its response as it flows from the applica-
tion to the device and then back to the application. Xen
adds two additional layers in the flow—the front-end
and back-end device driver—while MultiSense adds one
layer by using a user-level daemon in Domain-0. As Ta-
ble 1 shows, the overhead of these additional layers is
minimal compared (order of µseconds) to the actuation
times (order of seconds).

We also benchmark the maximum aggregate I/O that
MultiSense is able to support, and its CPU overhead.
For these experiments, we use Xen’s proportional-share
credit scheduler to allocate Domain-0 40% of the CPU
and each VM 10% of the CPU. We vary the number of
VMs from 1 to 5, where the first VM controls the PTZ
camera and the other VMs control the radar. Figure 6(a)
shows the maximum achievable I/O rate that MultiSense
is able to deliver to each vsensor by allowing our radar
emulator to produce data as fast as possible with no de-
lays from actuation overhead. The result demonstrates
that MultiSense is able to handle an I/O rate of 4.6 MBps.
This maximum I/O rate is 5x more than the maximum
possible sensing rate including actuation overheads as
shown by Figure 6(b), which uses a workload of random

actuations. The experiment also demonstrates that Mul-
tiSense uses only 12% of Domain-0’s 40% CPU share,
or 4.8% of the total CPU, in this extreme case.

6 Evaluation
We first evaluate the impact of MultiSense’s strategies
for state restoration, request groups, and scheduling in-
dividually using synthetic workloads. The experiments
demonstrate the extent to which these optimizations im-
prove request throughput and latency. MultiSense’s pri-
mary metric for success is whether or not it accommo-
dates real concurrent applications. We present a case
study for both the camera and radar that demonstrates
the application-level performance and timeliness require-
ments MultiSense can achieve using our example sen-
sors.

We use both deterministic and random synthetic work-
loads to benchmark MultiSense’s functions. For the
camera, the deterministic workload performs continuous
scans in a single actuator plane, e.g., pan, tilt, or zoom, in
a single direction interspersed with sense requests, while
the random workload repeatedly issues requests for ran-
dom settings of the actuators followed by a sense request.
Each scan issues a sense request every 10◦ starting at one
extreme of the plane and moving to its other extreme.
For the radar, the deterministic workload issues continu-
ous scans between two extreme points at a specific eleva-
tion, while the random workload repeatedly issues scans
between a random start and stop position. We intend
these synthetic workloads to be conservative, since they
force MultiSense to steer to extreme points in a sensor’s
state space, while also satisfying randomly generated re-
quests. We describe the workloads for the applications in
our case study in Section 6.3.

6.1 State Restoration and Request Groups
We demonstrate the impact of state restoration and re-
quest grouping, independently of our scheduling policy,
on a sensor’s throughput—the number of requests it is
able to satisfy per time interval. We first compare the

 0

 20

 40

 60

 80

 100

1:51:41:31:21:1

C
um

ul
at

iv
e

vs
en

so
r

T
im

e
(s

ec
on

ds
)

Weights (vsensor-1:vsensor-2)

vsensor-1
vsensor-2

Figure 9: SFQ enforces performance isolation over large num-
bers of requests. The ratio of the total vsensor time for the
two continuous scan workloads is in proportion to the assigned
weights.

eager approach to state restoration, described in Sec-
tion 3.1, with MultiSense’s lookahead approach. Fig-
ure 7 shows results from an experiment using five vsen-
sors, with batch size of 3, executing the random work-
loads described above, with both the radar and the cam-
era. Figure 7(a) shows the progress of completed re-
quests on the physical sensor for both approaches, while
Figure 7(b) plots the average latency to satisfy each re-
quest.

The lookahead approach is significantly more effi-
cient: it is able to satisfy nearly 2x as many requests dur-
ing the same 30 minute time period with 2x less latency
on average per request. We also demonstrate the impact
of request grouping by running the same experiments
above with and without grouping. Figure 8 shows the re-
sults. Using request groups, the camera is able to satisfy
2x more requests than without request groups. Our result
highlights the importance of optimizing state restoration
and grouping requests for efficiency, since a poor strat-
egy may cancel any benefits from better scheduling. The
consequences for an application are significant. For our
camera case study (Figure 16), a 2x increase in request
latency would mean capturing an image every 6 seconds,
versus capturing it every 3 seconds.

6.2 Scheduling
The goal of SFQ is to enforce performance isolation
between vsensors—each vsensor should receive perfor-
mance in proportion to its weight. While SFQ bounds
the maximum unfairness within any time interval, our
extensions relax this bound to increase efficiency. We
first demonstrate SFQ’s strengths and limitations when
scheduling steerable sensors, and then present results
that show the performance gains, as well as the impact
on fairness, for each of our extensions.

Our adaptation of SFQ advances virtual time in rela-
tion to the time each actuation consumes on the dedi-
cated sensor, which we denote as vsensor time. The more
vsensor time each actuation consumes the slower the ac-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
ds

)

Batch Size

Figure 10: SFQ shows better global performance in terms
of average throughput in requests/secondas as batch size in-
creases. For this experiment, each increment in the batch size
results in roughly a 10% improvement.

tuator. Figure 9 shows for the camera the total vsensor
time of two vsensors with different weight assignments
using our variant of SFQ, where each vsensor executes
the continuous scan workload. The figure demonstrates
that a straightforward use of SFQ for actuators isolates
vsensor performance: the cumulative vsensor time SFQ
allocates is in proportion to the assigned weights. The
isolation of radar vsensors is similar.

6.2.1 Request Batching and Merging
Figure 10 demonstrates the performance improvement
from batching for the camera. The experiment uses ran-
dom workloads from 5 vsensors to stress actuation, and
shows that the average throughput increases as the batch
size increases—each increment in batch size results in
roughly a 10% improvement. However, the improvement
comes at a cost: the scheduler diverges from strict fair-
ness. Figure 12 shows the cumulative request latency for
each of the five vsensors as a function of batch size, using
the same five vsensors and workloads as Figure 10. The
cumulative request latency is the sum of the latencies to
satisfy all requests at each vsensor, which is equivalent
to each vsensor’s makespan.

As expected, SFQ, which corresponds to a batch size
of 1, exhibits strong performance isolation. As the batch
size increases, though, performance isolation decreases,
causing the height of the bars to approach each other. For
these workloads, a batch size of 3 exhibits an appropriate
balance by increasing performance by 20% while achiev-
ing enforcing similar fairness properties. In practice, we
have found that a batch size of roughly half the number
of active vsensors strikes the appropriate balance. We
also evaluate the effect of batching with and without re-
quest merging for the radar, since its sensing requests are
sector scans that may cause overlap among concurrent
requests from different vsensors.

Figure 11(a) shows that merging results in a 75% im-
provement over batching without merging for multiple
batch sizes. Figure 11(b) also shows that merging de-

 0

 0.05

 0.1

 0.15

 0.2

 0 1 2 3 4 5 6

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

Batch Size

With Merging
Without Merging

 0

 1000

 2000

 3000

 4000

 5000

 0 1 2 3 4 5 6

I/O
 @

 D
om

ai
n-

0
(K

B/
re

qu
es

t)

Batch Size

With Merging
Without Merging

(a) Average Throughput (b) I/O Rate

Figure 11: Request merging (a) results in a 75% improvement in throughput and a 35% decrease in I/O rate (b) for our example
workloads compared to no request merging.

 0

 500

 1000

 1500

 2000

 2500

54321

C
um

ul
at

iv
e

R
eq

ue
st

 L
at

en
cy

 (
se

co
nd

s)

Batch size

vsensor-1 (w=1)
vsensor-2 (w=2)
vsensor-3 (w=3)
vsensor-4 (w=4)
vsensor-5 (w=5)

Figure 12: SFQ exhibits less fairness as the batch size in-
creases in terms of the average latency per request.

creases aggregate I/O (data per request) by nearly 35%.
Finally, we explore how the degree of overlap present in
a workload affects performance. Figure 13 shows the av-
erage request latency from two vsensors executing work-
loads with different degrees of overlap. We set each
vsensor to issue 180◦ sector scans, and vary the start-
ing point of one vsensor to control the size of the over-
lap. The experiment shows that the average request la-
tency approaches that of a dedicated sensor as the degree
of overlap approaches 100%, and that without request
merging the average request latency is 1.5x higher.

6.2.2 Anticipatory Scheduling
Figure 14 shows the performance impact of anticipatory
scheduling using the camera. Anticipatory scheduling
has similar results for the radar. If MultiSense does not
use anticipatory scheduling, vsensors must fill the sched-
uler’s queue with multiple sense requests by either is-
suing them asynchronously or issuing them on separate
threads, which is problematic if an application needs the
result of a sense request to determine its next position.
This experiment charts the actuation speed of two vsen-
sors over time executing random workloads with and
without anticipatory scheduling, where each point is an
average of 5 actuation requests. In this experiment we
only use the pan and tilt actuators so we can quantify
speed in terms of degrees/second.

As Figure 14 demonstrates, using anticipatory
scheduling with request patterns that have low spatial and
temporal locality results in a vsensor that is roughly 25%
slower. The experiment also demonstrates how weight
translates to the absolute speed of the actuator. With-
out anticipatory scheduling, the average speed for the
dedicated sensor is 23 degrees/second, while the average
speed for the vsensor with weight=1 is 12 degrees/sec
and with weight=2 is 19 degrees/sec. The average speed
for the dedicated sensor is less than the maximum speed
in Section 5.2 due to the random workload, which in-
cludes numerous short requests. Both 12 and 19 are
roughly 50% and 80% of the 23 degrees/second possi-
ble with the physical sensor. In this example, the speeds
are higher than the vsensors’ relative weights because
of the proximity of requests and the efficiency increase
of batching. The variance in speed for the vsensors is
greater than that of the dedicated sensor, which high-
lights the loose relationship between weight and absolute
speed for steerable sensors.

6.3 Case Studies

Our case study explores MultiSense’s use with four ex-
ample applications with specific performance metrics
that are applicable to both the camera and radar. In the
experiments, we use the lookahead state restoration ap-
proach, request groups, and proportional-share schedul-
ing.

• Continuous Monitoring. For the camera, continu-
ously pan in increments of 65◦ and capture an im-
age, while for the radar, continuously execute 360◦

sector scans at a specific elevation. The perfor-
mance metric is the time to cover the sensor’s entire
range.

• Fixed-point Sensing. For the camera, pan, tilt, and
zoom the lens to a fixed point and repeatedly cap-
ture images at a regular interval, while for the radar,
execute the same 30◦ sector scan at a specific eleva-
tion. The performance metric is the sensing rate.

 0

 1

 2

 3

 4

 5

 0 25 50 75 100

La
te

nc
y

(s
ec

on
ds

)

% Overlap

No request merging
Request merging

Dedicated

Figure 13: Request merging takes advantage of overlapping
requests to increase the aggregate performance.

• Object Tracking For the camera, periodically track
a pre-defined path along both the pan and tilt axes
and capture images every 10◦, while for the radar
execute small sector scans every 30◦. The perfor-
mance metrics are both the latency between sensing
requests, and the minimum overall latency neces-
sary to keep up with the moving object.

• Multi-sensor Fixed Point Sensing. For two cam-
eras, pan, tilt, and zoom the lens to the same fixed
point and repeatedly capture images at a regular in-
terval, while for two radars, scan the same 30◦ sec-
tor at the same elevation. In both cases, both sensors
must also satisfy competing applications. The per-
formance metric is the rate at which both sensors
capture the fixed-point, which is equivalent to the
minimum sensing rate of the two sensors.

With a dedicated camera, fixed-point sensing has near
video quality. The sensing rate is 11 images/second with
an average inter-image interval of 0.09 seconds. How-
ever, even on a dedicated sensor, actuation does have a
significant effect on performance. Executing our random
workload, reduces the rate to 0.3 images/second with an
average inter-image interval of 3.35 seconds. Similarly,
two fixed-point sensing applications—at a distance of
180◦—are both able to capture 0.2 images/second with
an average inter-image interval of 4.65 seconds. With
the radar, fixed-point sensing with a dedicated sensor is
able to scan the same 30◦ sector every 0.5 seconds, but
executing a random workload of 30◦ scans reduces the
rate to every 1.5 seconds. We use these sensing rates for
comparison in our case study below.

We first execute both continuous monitoring (Fig-
ure 16(a) and Figure 17(a)) and object tracking (Fig-
ure 16(a) and Figure 17 (b)) concurrently with the fixed-
point sensing application for both the camera and the
radar. In both cases, we maintain a weight of 1 for fixed-
point sensing, while varying the weights assigned to con-
tinuous monitoring and object tracking. Figure 16 shows
the results for the camera and Figure 17 shows the results
for the radar, where the left y-axis plots the application’s
performance metric, the right y-axis plots sensing rate

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200

Ac
tu

at
io

n
Sp

ee
d

(d
eg

re
es

/s
ec

)

Time (seconds)

Dedicated
No Anticipatory-2 (weight = 2)

Anticipatory-2 (weight = 2)
No Anticipatory-1 (weight = 1)

Anticipatory-1 (weight = 1)

Figure 14: Anticipatory scheduling decreases performance, in
terms of actuator speed, for steerable sensors when there is little
spatial and temporal locality.

 0

 500

 1000

 1500

 2000

0.2 0.6 1 1.4 1.8
 0

 2000

 4000

 6000

 8000

 10000

!
 L

at
en

cy
 R

ad
ar

s
(m

se
c)

!
 L

at
en

cy
 C

am
er

as
 (m

se
c)

Weight Ratio

Radar
Camera

Figure 15: The difference in latency when coordinating mul-
tiple vsensors on different nodes to sense the same point.

for fixed-point sensing, and the dotted line depicts per-
formance on a dedicated sensor. The results show that
MultiSense is able to satisfy the conflicting demands of
concurrent applications. Of course, the applications must
be able to tolerate less performance than possible with
the dedicated sensor, which in these examples ranges
from 1.5x to 8x less performance for the different weight
assignments in this experiment. Since weight dictates
performance, some applications may need a minimum
weight to satisfy their requirements.

Consider continuous monitoring for the camera with a
1:30 weight ratio, the application is able to pan all 340◦

in 20 seconds. Thus, in the real-world, the monitoring
application is able to capture 4 distinct points 113 feet
apart, e.g. four doorways, at distance of 100 feet from
the camera every 5 seconds 2. Simultaneously, fixed-
point sensing maintains an average sensing rate of nearly
0.2 images/second, allowing it to continuously capture a
single point, such as a nearby intersection. Likewise, for
a 1:3 weight ratio, the object tracking application is able
to scan a pre-defined path every 10◦ and capture images
at least every 6 seconds, which is suitable for tracking a
moving object at a distance of 300 feet moving at 2.66
miles/hour, e.g., a person walking, for up to 1779 feet
(over 1/3 mile) of the object’s motion with 25x zoom.

2The example assumes the points are along a circle with radius 100
feet with camera’s lens as its center.

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6
 0

 0.2

 0.4

 0.6

 0.8

 1

34
0

de
gr

ee
 S

ca
n

T
im

e
(s

ec
on

ds
)

S
en

si
ng

 R
at

e
(im

ag
es

/s
ec

on
d)

Weight (x 10)

Scan Time
Sensing Rate

Dedicated Scan Time

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
ra

ck
in

g
La

te
nc

y
(s

ec
on

ds
)

S
en

si
ng

 R
at

e
(im

ag
es

/s
ec

on
d)

Weight

Tracking Latency
Sensing Rate

Dedicated Tracking Latency

(a) Continuous Monitoring (b) Object Tracking

Figure 16: For the camera, MultiSense is able to serve concurrent sensing applications. A continuous monitoring application (a)
and an object tracking application (b) both maintain tolerable performance for varying weight assignments, while competing with
a fixed-point sensing application with weight 1.

 0

 2

 4

 6

 8

 10

1 3 5 7 9
 0

 10

 20

 30

 40

 50

36
0

de
gr

ee
 S

ca
n

Ti
m

e
(s

ec
on

ds
)

Se
ns

in
g

Ra
te

 (K
B/

se
co

nd
)

Weight

Scan Time
Sensing Rate

Dedicated Scan Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 3 5 7 9
 0

 10

 20

 30

 40

 50

Tr
ac

kin
g

La
te

nc
y

(s
ec

on
ds

)

Se
ns

in
g

Ra
te

 (K
B/

se
co

nd
)

Weight

Tracking Latency
Sensing Rate

Dedicated Latency

(a) Continuous Monitoring (b) Object Tracking

Figure 17: For the radar, MultiSense is able to serve concurrent sensing applications. A continuous monitoring application (a)
and an object tracking application (b) both maintain tolerable performance for varying weight assignments, while competing with
a fixed-point sensing application with weight 1.

Both the specific speed and the total distance tracked are
dependent on the object’s trajectory, its distance from the
camera, and the camera’s optical zoom and resolution
settings 3. During tracking, the fixed-point sensing ap-
plication maintains a sensing rate of 0.3 images/second.

Now consider continuous monitoring for the radar.
With a 1:5 ratio, the radar is able to complete a 360◦

scan in about 7 seconds, while simultaneously scanning
the same 30◦ sector every 11 seconds. Even if we as-
sume that a thunderstorm travels 60 mph, which is rela-
tively fast, the continuous monitoring application is able
to capture the storm’s movement every mile. If we track
the storm the performance is even better. In this case,
for a 1:3 ratio, the radar is able to scan a 30◦ sector ev-
ery second, while sensing a fixed-point every 11 seconds.
Since the radar we emulate has a range of 25 miles, we
are able to capture the storm’s movement every 1

60 miles
or 88 ft. These situations translate into other real-world
events as well. For instance, fixed-point sensing is useful
for monitoring the core of a slow moving storm, while
object tracking is also useful for tracking a tornado.

3Our example assumes that the object’s trajectory is along a circle
of radius 300 feet with the camera’s lens as its center.

We also ran an experiment for a networked multi-
sensor scenario where the application coordinates multi-
ple sensors to sense a fixed point, while competing with
continuous monitoring on one sensor and fixed-point
sensing on the other. The experiment demonstrates the
extent to which MultiSense satisfies timeliness require-
ments. Figure 15 shows the results for both the camera
and the radar. The x-axis shows experiments with differ-
ent weight ratios assigned to the competing applications
on each sensor, while the y-axis plots the average dif-
ference in latency between two requests. The magnitude
of this difference determines how close in time the two
sensors are able to capture data for the same point. As
the graph shows, higher weight assignments decrease the
difference, and provide near (< 1 second) simultaneous
sensing. Even with a low relative weight assigment the
sensors sense the same point within 2 seconds of each
other, which is suitable for a range of scenarios, such as
estimating three-dimensional wind direction for radars or
pedestrian entry/exit points for cameras.

7 Related Work
MultiSense applies the proportional-share paradigm,
which has been well-studied in other contexts, to mul-

tiplex control of steerable sensors. SFQ was originally
prototyped for multiplexing packet streams and later ex-
tended to CPUs [6]. More recently, there has been
work on proportional-share scheduling for energy—
another non-traditional resource—using virtual batter-
ies [4]. PixieOS also uses proportional-share scheduling
techniques to enable explicit application-level control of
CPU, memory, bandwidth, and energy for motes [10].
We extend the paradigm to include the actuation re-
sources of steerable sensors. However, our work fo-
cuses on a type of sensor network that does not have the
same energy or computing constraints as mote-class sen-
sor networks, and, consequently, does not face the same
problems.

Perhaps most related to MultiSense is past work on
proportional-share scheduling for disks. Disk schedulers
incorporate a similar batching technique [3] and often
group together write requests and flush them to disk on
after a read request occurs. However, there are funda-
mental differences in the relative speed of the actuators
and their use that present different trade-offs for steerable
sensors. Rather than modeling the shared resource as I/O
bandwidth or number of I/Os, which is often the case for
disks [12], we use aggregate time controlling the sensor,
or equivalently its speed, since the responsiveness of the
sensor determines when and what applications are able to
sense. We also evaluate the effect of optimizations such
as merging and anticipatory scheduling for steerable sen-
sors, which have different workload characteristics than
disks.

MultiSense uses Xen’s [1] basic abstractions for mul-
tiplexing I/O devices [14]. However, MultiSense does
not implement conventional device virtualization that
delegates control of an entire peripheral device or bus
to a VM by passing device requests through the hy-
pervisor. Our choice to implement sensor multiplexing
and proportional-share scheduling in Xen is a result of
our broader goal of lowering the barrier to experiment-
ing with these systems from the ground up. Xen and
other virtualization platforms offer the low-level fault,
resource, and configuration isolation that we require.
Thus, we “virtualize” at the protocol layer—the char-
acter device file interface—so MultiSense can interpret
each vsensor request and control their submission to the
physical sensor. As with prior work on device drivers,
we structure devices as state machines, which is a natu-
ral choice for stateful devices [11].

8 Conclusion
MultiSense extends proportional-share scheduling to
multiplex the resource of controlling a sensor’s actuators.
For steerable sensors, control of the actuators is an appli-
cation’s most important resource since it determines the
type of data the sensor collects. This is the first work, to

the best of our knowledge, to multiplex this important,
but often overlooked, class of sensors. One reason mul-
tiplexing is critical for steerable sensor networks is their
high deployment costs. In this paper, we demonstrate
techniques for enabling multiplexing and proportional-
share scheduling, and evaluate our techniques on syn-
thetic workloads that demonstrate their effectiveness. Fi-
nally, we use our techniques in case studies for two sen-
sors that show their behavior for four real applications.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
And The Art Of Virtualization. SOSP, October 2003.

[2] K. Binsted, N. Bradley, M. Buie, S. Ibara, M. Kadooka,
and D. Shirae. The Lowell Telescope Scheduler: A Sys-
tem To Provide Non-Professional Access To Large Auto-
matic Telescopes. Internet and Multimedia Systems and
Applications, August 2005.

[3] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A.
Silberschatz. Disk Scheduling With Quality Of Service
Guarantees. International Conference on Multimedia
Computing and Systems, July 1999.

[4] Q. Cao, D. Fesehaye, N. Pham, Y. Sarwar, and T. Ab-
delzaher. Virtual Battery: An Energy Reserve Abstrac-
tion For Embedded Sensor Networks. RTSS, November
2008.

[5] A. Francoeur. Border Patrol Goes High Tech. photon-
ics.com, August 2009.

[6] P. Goyal, H. Vin, and H. Cheng. Start-time Fair Queue-
ing: A Scheduling Algorithm For Integrated Services
Packet Switching Networks. SIGCOMM, August 1996.

[7] S. Iyer and P. Druschel. Anticipatory Scheduling: A Disk
Scheduling Framework To Overcome Deceptive Idleness
In Synchronous I/O. SOSP, October 2001.

[8] M. Jones, D. Rosu, and M. Rosu. CPU Reservations And
Time Constraints: Efficient, Predictable Scheduling Of
Independent Activities. SOSP, October 1997.

[9] M. Li, T. Yan, D. Ganesan, E. Lyons, P. Shenoy, A.
Venkataramani, and M. Zink. Multi-user Data Sharing
In Radar Sensor Networks. SenSys, November 2007.

[10] K. Lorincz, B. Chen, J. Waterman, G. Werner-Allen, and
M. Welsh. Resource Aware Programming In The Pixie
Operating System. SenSys, November 2008.

[11] T. Nelson. The Device Driver As State Machine. C Users
Journal, 10(3), March 1992.

[12] P. Shenoy and H. Vin. Cello: A Disk Scheduling Frame-
work For Next Generation Operating Systems. SIGMET-
RICS, June 1998.

[13] S. Magnuson. New Northern Border Camera System To
Avoid Past Pitfalls. National Defense Magazine, Septem-
ber 2009.

[14] A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facilitat-
ing The Development Of Soft Devices. USENIX, April
2005.

[15] M. Zink et al. Meteorological Command And Control:
An End-to-end Architecture For A Hazardous Weather
Detection Sensor Network. Workshop on End-to-End,
Sense-and-Respond Systems, Applications, and Services,
June 2005.

