
Design Notes On Using the
GENIAPI to Build a TIED
Federation Plug-in for the
PlanetLab Control Framework

Ted Faber, USC/ISI

John Wroclawski, USC/ISI

Version 1.0

October 6, 2010

Corresponding to GENIAPI version 1.0.

TIED Federation Plug-in Design Oct 6, 2010

Table of Contents

1 Introduction...3

1.1 Interrelating Control Frameworks and Aggregates..4

2 TIED Federation and Plug-Ins..7

2.1 The Role of Plug-ins in the DCA...9

3 The Slice-Based Federation Architecture and GENIAPI...9

3.1 The SFA Document..10

3.2 The GENIAPI Definition...11

4 GENIAPI support for a TIED/PlanetLab Plug-in...12

4.1 Resource Models..13

4.2 Experiment Layout...14

4.3 Resource Control and Credentials..14

5 Summary...15

2

TIED Federation Plug-in Design Oct 6, 2010

1 Introduction

This document continues our assessment of the emerging GENIAPI standards and
implementation as a target plug-in API for the TIED/DETER1 control architecture, and as a
general GENI interoperability framework[1]. This version 1.0 of the document corresponds to
GENIAPI version 1.0[2]. This document clarifies some of our earlier comments on how control
frameworks and aggregates interrelate based on feedback from mailing list discussions, and
discusses the limitations of the GENIAPI with respect to a future TIED/PlanetLab plug-in and by
extension other GENIAPI consumers.

In our assessment of the GENIAPI as a unified framework – one that would support a unified
PlanetLab/ProtoGENI TIED plug-in – we found several areas where the API needs to be
modified or specified in order to make significant code sharing possible. The representation of
resources needs to expose the slicing mechanisms used by the control framework; PlanetLab
slicing and ProtoGENI slicing are fundamentally different and used for different kinds of
experiments. The API must provide access to monitoring and layout tools within the control
frameworks; many key PlanetLab tools are inaccessible to a plug-in. Finally interfaces to slice
authorities – the entities that create the slice abstraction – must be created; PlanetLab and
ProtoGENI have different authorization models with respect to slice creation and these interfaces
need to provide authorization enforcement points for each as well as a common work flow for
slice operations.

The TIED federation framework has been used successfully to construct experimental
environments that span multiple dissimilar facilities. As one part of this process, a federated
experiment environment is collaboratively constructed and then instantiated. In the instantiation
phase, each facility maps the necessary control actions, resource access permissions and
principal identities into local actions, access controls and identities. Facilities do this by
implementing the required mapping functions and interfaces in the form of a plug-in, which is
written to a standard specification[3]. TIED/DETER currently supports plug-ins, and thus can
create federations across, the DETER testbed, Emulab[4] systems, ProtoGENI[5], deterministic-
resource networks controlled by DRAGON[6], and a number of other resource categories.

This federation system has developed in parallel with the Slice-based Federation Architecture2
(SFA) [7] originally outlined by members of the network testbed community under the auspices
of the GENI Planning Group, and further developed by the community under the umbrella of the
GENI Program Office and the GENI program.

The emerging GENIAPI[2][8] is a derivation and standardization of concepts from the SFA and
the existing implementations of these concepts in the individual GENI control frameworks,

1The TIED/DETER control architecture is an evolving testbed control and federation architecture developed under
the dual auspices of the DETER Cybersecurity Testbed project and the TIED GENI project. We occasionally refer
to this architecture as either the “TIED” or the “DETER” architecture in cases where the dual TIED/DETER
formulation is excessively awkward and not needed for clarity.

2Initially referred to as the “Slice-based Facility Architecture”.

3

TIED Federation Plug-in Design Oct 6, 2010

notably the ProtoGENI[5] and PlanetLab[9] efforts. The goal of the GENIAPI is to standardize
an API for interoperability between existing and future control frameworks, components, and
aggregates. Practically, the design and standardization aspects are balanced against documenting
what the initial implementations have done and incorporating their insights. The GENIAPI
aggregate manager interface, which we describe in more detail below, has been implemented to
varying degrees in PlanetLab, ProtoGENI, and OpenFlow[10][11].

The purpose of this document is to describe the issues we encountered in assessing the
usefulness of the GENIAPI in facilitating a PlanetLab plug-in for TIED. This document builds
on our earlier assessment of the GENIAPI as TIED interoperability layer[1], beginning with an
assessment of the goals and architecture of the GENIAPI.

1.1 Interrelating Control Frameworks and Aggregates

In order to understand and evaluate the GENIAPI we must understand how it relates to the SFA
and GENI interfaces as a whole. The GENIAPI is an interface between a control framework,
which implements the slice abstraction, and the experimenters that use it. The GENIAPI AM is
the interface between those experimenter (or their agents) and resource aggregates that control
federated resources that share an owner. Slices are collections of resources that the control
framework acquires from resource aggregates. A collection of resources allocated within a
single aggregate is called a sliver. At the request of a researcher, a control framework will
allocate a slice and populate it with slivers from one or more aggregates. A primary goal of the
GENIAPI is that aggregates can interoperate with multiple control frameworks[12].

Our earlier discussion treated control frameworks as monolithic, but decomposing the framework
is helpful in understanding the design choices. In Figure 1 the control framework is broken into
its constituents. The agent provides an interface to the experimenter as well as connecting to the
GENIAPI-managed aggregates (AM) and the slice authority. The aggregates support the
GENIAPI Aggregate Manager interface, used to advertise and allocate resources. The slice
authority presents the slice interface. Specifically, the slice authority is responsible for creating
and naming slices that span multiple aggregates. It is responsible for the bookkeeping necessary
to create a single abstraction from a collection of resources.

PlanetLab and ProtoGENI both implement this model. In PlanetLab, the agent is more
monolithic, and it is addressed the same way when talking to different aggregates; in ProtoGENI,
the existence of the various aggregates is exposed more directly to the user.

4

Figure 1: Control Framework

TIED Federation Plug-in Design Oct 6, 2010

In both cases the slice authority and the aggregates share some state about the evolving slice –
for example what AM's have contributed resources to the slice. The path for that information is
underspecified; one can imagine that the agent passes information about successful allocations to
the slice authority, or that a channel between the AM's and the slice authority exists (the dashed
lines in Figure 1).

The current GENIAPI specifies the interface between the agent and the aggregates. Other
interfaces are defined by local implementations – PlanetLab and ProtoGENI each have one
documented between agent and slice authority, though neither describes the interface from
aggregate manager to slice authority. Neither system requires the agent to act as a conduit for
this information.

Depending on how they are used and what information they are privy to, agents may either be
part of the control framework or users of those interfaces. An agent may embody some
experimenter knowledge by exporting an interface that represents GENI resources in ways that a
specific population understands as an external agent. Conversely an internal agent represents
knowledge specific to the control framework, for example, how best to lay out a given
experiment using the framework's resources, and may export an enhanced version of the
GENIAPI interface.

5
Figure 3: Recursive agents

Figure 2: The Agent and the Control Framework

TIED Federation Plug-in Design Oct 6, 2010

External agents sit outside the GENIAPI-defined control framework as shown on the left side of
Figure 2, while internal agents are part of that framework. Multiple external agents may
independently operate on the same control framework, one external agent may compose
experimental environments from many control frameworks.

The two sides of Figure 2 are not mutually exclusive. External agents can call into a control
framework that has internal agents acting as agents, slice authorities and aggregates. This is the
case we described somewhat opaquely as the recursive case in our earlier discussion[1]. An
example of this is shown in Figure 3.

Given this decomposition of the control framework, one formulation for the interoperability
goals of the GENIAPI is to support situations like the one pictured in Figure 4. An external
agent collects resources from two control frameworks into a single experiment. As pictured, the
external agent coordinates two slices to make this happen. One could imaging taking one control
framework's slice authority out of the equation, but this would require one control framework's
slice authority to understand information about slice composition from other framework's
aggregate managers. This will not happen without mechanisms for AM's to represent their
allocations to foreign slice authorities.

The two observations we would like to highlight are:

• The design of smart agents inside control frameworks may be simplified by having them
export the aggregate manager interface, assuming it is defined with that in mind

• The interfaces to the slice authority (agent/slice authority and AM/slice authority) must
be defined.

6

Figure 4: Interoperating Control Frameworks

TIED Federation Plug-in Design Oct 6, 2010

The confusion about terminology and usage implies that there may be confusion in the GENI
community about the role of the aggregate manager interface. Though the broad boundaries of
the control framework as a whole, and the components of it are generally agreed upon, exactly
what functions are required and how they will be structured continues to evolve.

This document proceeds by describing TIED plug-ins in Section 2 and the GENIAPI in Section
3, before discussing the specific lessons learned from evaluating the GENIAPI as a basis for a
PlanetLab plug-in in Section 4. Sections 2 and 3 largely recapitulate the similar descriptions in
our earlier discussion[1], with updates on changes since that document appeared. Our findings
are summarized in Section 5.

2 TIED Federation and Plug-Ins

We briefly outline the architecture and goals of the DETER Control Architecture (DCA). The
design document for the ProtoGENI plug-in[15] discusses this in more detail.

The DETER Control Architecture, on which DETER and TIED are based, supports as its basic
abstraction a substantial generalization of the Utah Emulab[4] model of experiments and
experiment creation. Some key properties of this model are as follows:

• Experiments consist of logical nodes, which may model many sorts of computing and
communication resources, interconnected by abstract links and/or LANs to form a
network topology in which the experiment is carried out. In the original Emulab model,
nodes are implemented primarily using general-purpose computers, while
interconnections are created using virtual networks implemented by off-the-shelf
Ethernet switches. Recent advancements in DETER and Emulab extend this model
somewhat.

• Experiments are generally isolated from one another, but make use of support services
provided by the testbed infrastructure, such as file systems shared between experiment
nodes and an event delivery system that enables loosely coordinated changes to the state
of experimental nodes.

• There is a general communication path between experiment nodes and and testbed
servers that can be used to remotely access the experiment interactively or
programmatically. Depending on experimenter's comfort and familiarity with testbed
services, either standard testbed services or more ad hoc systems may be used to carry out
experimental procedures.

The DETER Control Architecture represents and implements a continuing evolution of this basic
testbed model.

Given this environment, the basic process of creating an experiment (slice) in the TIED/DETER
environment consists of three steps:

7

TIED Federation Plug-in Design Oct 6, 2010

1. Acquiring access to individual testbeds consistent with local access control policies.

2. Allocating necessary resources to the experiment using local allocation strategies.

3. Forming the shared experimental connectivity and composing the required experiment
services.

Each of these functions is implemented within the control architecture of the DETER/TIED
system. Core elements of the DCA are shown in Figure 5 below.

Central to the DCA architecture is the federator. The federator and its control language, CEDL,
serve as a “narrow waist” within the design, providing a unifying functional layer between, on
the one hand, a broad range of specialized tools for user interaction and experiment
configuration, and on the other, the interconnected resources of multiple physical facilities with
different resources and capabilities. The federator acts as the interface between users who are
creating and controlling an experiment (slice) and the various federants who have supplied the
resources that constitute the slice. It presents users with a single interface for control, but
translates the creation of sub-experiments/slivers into the configuration system of the local
resource owners.

8

Figure 5: The DETER Control Architecture

TIED Federation Plug-in Design Oct 6, 2010

2.1 The Role of Plug-ins in the DCA

The previous section outlined the core elements of the DETER Control Architecture and
described the central role of the federator in this architecture. In implementation terms, the
federator is broken up into two parts, the experiment controller, which manages the slice or
experiment as a whole, and an access controller for each testbed or facility that contributes
resources. The access controller is responsible for translating the access control decisions from
the global domain into local configurations, for using local resource allocation systems to bind
resources to the experiment, and for configuring those resources to create the topology and
relevant services for the experiment.

Because the function of a access controller is specific to the class of testbed or facility it is
controlling, the access controller is implemented as a plug-in, with different plug-ins used to
interface with different classes of facility. The plug-shaped icons in the figure show the location
of these plug-ins within the DCA design. The figure shows that each plug-in supports two
interfaces, a standard one to the federator and a testbed-specific one to the testbed itself.3

Each plug-in may be implemented and deployed in several configurations, depending on the
operational and administrative requirements of the testbed being federated. The experiment
controller and access controller may run on the same machine, with the access controller
proxying requests back to the testbed it manages; the access controller may be co-located with
the testbed and accessed remotely by the experiment controller; or the plug-in may run on a third
machine unrelated to either the testbed it controls or the location of the experiment controller.
One can think of these layouts as placing more or less functionality in each of the plug-ins in
Figure 5.

Though each experiment/slice is controlled by one experiment controller, experiment controllers
are fairly lightweight entities. They are responsible for splitting the experiment up between
access controllers and managing the credentials of the researchers who are creating the
experiments. None of these responsibilities require that the experiment controller run on testbed
resources; experiment controllers that run on desktops and communicate with access controllers
running on testbed nodes is a likely configuration.

3 The Slice-Based Federation Architecture and GENIAPI

The SFA document traces its history to the earliest days of the GENI development, and the
architecture it describes reflects many of the fundamental ideas behind GENI. Its original goal
was to define a minimal interface that conformant GENI implementations would export, and it
has become a touchstone for the architecture in general.

The GPO-managed prototyping and implementation phase encouraged multiple implementations
of the architecture defined in the forerunners of the current SFA document. These
implementations were called control frameworks. Confronted with the loose definitions of core
resource allocation and management functions, data structures, and authorization framework,

3In the figure it appears that plug-in code must be loaded in the federator code base itself, but this is a conceptual
diagram rather than an implementation block diagram. What is important is the standard interface between federator
and plug-in.

9

TIED Federation Plug-in Design Oct 6, 2010

each control framework implementor made a set of design decisions and created a different
system within the overall confines of the architecture. The most successful of these
implementations, ProtoGENI and PlanetLab, extended their existing interfaces to include the
SFA interfaces. Of course, the underlying resource models of these and other control
frameworks strongly influenced how they interpreted and extended the SFA. While the
implementations shared a spirit, they differ in significant details.

The GENIAPI project is an attempt to reunify the various control frameworks to the point where
they can interoperate. The initial release of this effort is a specification and implementation of
the aggregate manager API[16]. That implementation is not a strict implementation of the SFA
aggregate manager interface (called the slice interface in the SFA document), and is, in many
ways, an improvement. We briefly review the current SFA document and the GENIAPI
interface.

3.1 The SFA Document

The SFA document defines the key entities, abstractions, and data flow for resource allocation in
GENI. It continues to be regularly revised, and the current version includes notes from the
authors[7].

The SFA lays out the basic players in the GENI ecosystem and then describes the key
abstractions of slice and sliver that underly much of GENI discourse. The SFA describes a sliver
as a collection of co-managed resources and slice as a collection of slivers and users bound to the
collection. It describes the life cycle of a slice, all indicative of the slice's central role in
experiment creation in GENI.

Components and aggregates are also defined as abstractions of co-managed resources that can be
multiplexed (sliced). The component/aggregate distinction is somewhat slippery, and is based on
whether one or more user-visible resources are managed by it. We generally use “aggregate” to
refer to this abstraction.

Naming and identification of actors in GENI is discussed in its own section of the SFA
document. A fairly intricate system of binding a principal to a public key, a universally unique
identifier[17], and a lifetime is put forward. These identifiers are called GIDs. The authors note
that none of the implementations have adopted this framework, and the section will be revised,
though we will continue to use GID to indicate a principal identifier. The lack of agreement on
naming and identity remains an interoperation problem.

The Rspec, ticket, and credential are laid out as fundamental data types. The Rspec is a resource
specification used to request slivers and slices; a ticket is a signed Rspec bound to a GID and a
unique identifier used to denote a reservation from an aggregate. Though it is recognized as a
fundamental data structure, the Rspec's formats and requirements are not specified here.

Credentials are described as the binding of a particular privilege to a GID, and a set of privileges
are defined. Section 8 of the SFA refines this definition, and we discuss the refined definition
below.

10

TIED Federation Plug-in Design Oct 6, 2010

Following this interfaces are defined, including the aggregate interface also defined and
implemented by the GENIAPI. The interface describes the binding of slivers to slices, though
the interfaces do not include an explicit parameter for the slice being bound. The binding is
described in the functional descriptions. Aggregates are aware of slices and carry out the process
of binding resources to them, which corresponds more closely to our recursive model.

The last two sections of the SFA are somewhat different in tone from those described above.
Section 7 titled “Authorization and Access Control,” is fairly heavily annotated with
disagreements. The authors agree that there are authorities responsible for authorizing access to
slice interfaces and separate authorities controlling resource allocation, but there seems to be less
agreement on how these authorizations are expressed. Discussions of group rights and individual
attributes are included.

The final section, “SFA Authorization Using Registered Capabilities” seems to be an example of
realizing the architecture, but there is no such explicit statement. The section introduces a new
architectural element – the registry – and expands the definition of credentials. This separation
of slice manipulation from earlier allocation mechanisms is closer to our two-level model.

A registry contains information bound to GIDs, including human-readable-names (HRNs). The
HRN defines a set of entities responsible for validating the identity of the principal having that
GID. This separation of validation information from the identity is somewhat confusing, and at
odds with the earlier interface definitions. Other data is maintained in the registry, including
real-world information about principals and slice information. Interfaces and privileges for
accessing the registry are defined.

The description of a credential is expanded upon, defining the credential as a binding between
principal GID, object GID (a sliver, slice, or registry), the privileges authorized and their lifetime
and an expression of how those rights might be delegated.

The final section's indications of a two-level model conflict with the earlier sections' implications
that the aggregate manager binds slivers to slices as in a recursive model. This is one of the
indications that the community has not formed a consensus around the overall role of the
aggregate interface.

3.2 The GENIAPI Definition

The GENIAPI specification of the aggregate manager interface is an improvement on the SFA
document in some respects. The various slice and sliver operations include explicit naming of
the object to be manipulated rather than being part of the credential. At points in the interface
where data structures are evolving or extensible by nature the GENIAPI adopted appropriate
self-describing data structures to support evolution and extension.

The specification is a subset of both the SFA document and the various existing control
framework implementations. For example, none of the calls for ticket manipulation exist, which
may make writing resource brokers difficult.

The most recent specification lays out certificate and credential formats, but leaves Rspecs
unbound[2].

11

TIED Federation Plug-in Design Oct 6, 2010

This specification does not directly specify either Rspec or credential formats, although some
commonality is essential for long term interoperability. While the code picks an identity format
based on X.509 certificates, the documentation does not specify that format.

Finally, key operations like creating a slice or assigning credentials remain unspecified. This
may be because such definitions are missing from the SFA, because the implementations have
adopted different models. These missing interfaces may also reflect confusion between the two
usage models we have posited.

4 GENIAPI support for a TIED/PlanetLab Plug-in

From the perspective of the GENIAPI and the model in Section 1.1, a TIED plug-in is an internal
agent that exports TIED rather than GENI interfaces. The TIED experiment controller is an
external agent in the position depicted in Figure 4, communicating with multiple systems. In a
world where the GENIAPI was perfectly successful, a single TIED/GENI plug-in would work
for any control framework. This section discusses the difficulties in creating such a GENIAPI
plug-in across the PlanetLab and ProtoGENI systems; we believe these difficulties are relevant
to many internal and external agents using the GENIAPI.

Because TIED was derived from an Emulab model of experimentation, its resource model is one
of full control of isolated resources; PlanetLab's lineage is one of multiplexed resources
embedded in an existing Internet. Any unified GENI plug-in will need to be able to determine
the kind of slicing in use so that the plug-in can advertise the resources to TIED properly. In
addition, we need to expand the TIED model to accommodate a broader set of resource sharing
modes.

PlanetLab's tools seem to be generally designed for human beings to use, and therefore require
some context and understanding to use effectively. There are other tools available to assist
humans in understanding the PlanetLab system, but these are not available through the GENIAPI
(or the PlanetLab SFA). As a result, laying out a PlanetLab experiment requires more
investment from the TIED plug-in's logic and more developer effort. In general terms, even an
external agent would benefit greatly from access to more information and services than the
GENIAPI exposes.

Finally, PlanetLab gathers resources that are owned in a more federated way and distributed
more broadly than ProtoGENI, which makes the internal permission structure and
responsibilities of the owners different. Many of these authorization decisions will be made on
operations yet to be standardized in the GENIAPI, and these differences show that its shape must
accommodate many structures.

We discuss each of these differences below. Each section details the underlying issue further
and suggests how it should affect the GENIAPI.

4.1 Resource Models

Currently different control frameworks tend to represent different views of what resources are
interesting and how they are sliced between experimenters. This is natural and useful, but as

12

TIED Federation Plug-in Design Oct 6, 2010

control frameworks begin to interoperate key assumptions about their resource models must be
made visible by the API. ProtoGENI and PlanetLab provide instructive examples.

To acquire a resource in a ProtoGENI environment is to control it almost completely. Systems
like ProtoGENI, including Emulab and DETER, are designed to provide isolation between
experiments and to give the experimenter total control over the environment in which the
experiment is being conducted and the data collected. Repeatability and control of experimental
parameters drive the systems.

To acquire a PlanetLab resource is to acquire rights to use part of a resource located somewhere
in the shared Internet. Experimenters have some control over where the systems are located and
some say in the rights they can exert, but a PlanetLab resource is fundamentally shared.
Controlled access to the shared public Internet are underlying goals, not hard resource
requirements.

These characterizations are, to some extent, generalizations. There are facilities in
TIED/DETER for expanding controlled experiments by using shared Internet connectivity.
There are systems in PlanetLab for acquiring dedicated internode capacity and guaranted
resources. But the two systems solve two different experiment layout problems.
DETER/Emulab/ProtoGENI is analogous to a virus lab or a particle accelerator where the
environment is as controlled as possible. PlanetLab is a way to make excursions looking for new
network species or to deploy prototypes into an uncontrolled environment.

For an agent accessing the resources of one of these two control frameworks, the problem is that
the only way to determine the kind of resources in the aggregates knowledge outside the
advertisement – a framework supports PlanetLab slicing if it is PlanetLab. Strictly speaking,
even parsing the advertisement requires such knowledge because the various control frameworks
use different Rspec formats for resource advertisements.

Agents that want to speak across multiple frameworks, like a TIED GENIAPI plug-in, will need
both a standard format, or small set of formats for advertisement and reservation. Those formats
should capture information about slicing model and information about what phenomena are
important in real world selection. For example, are nodes able to communicate over the
Internet? Are they required to do so? Do they have a meaningful physical location? A location
in some network coordinate system? Can they sense data in the real world? Actuate devices in
the real world?

As we have discussed before, the formats of the various Rspecs are not very different[1], but in
this case the closeness in format hides underlying differences in how resources are sliced and
how they relate to the world. While experiments are carried out inside one control framework
with a consistent resource model, these assumptions are unimportant because they are never
violated. When aggregates are shared across multiple control frameworks or agents manipulate
multiple control frameworks, these assumptions need to become visible constraints.

4.2 Experiment Layout

Constructing the experiment topology from the resources allocated in a control framework
requires knowledge of the resources and their interconnection properties. Control frameworks

13

TIED Federation Plug-in Design Oct 6, 2010

tend to develop tools to help with or perform topology layout fairly early in the control
framework's lifetime. Access to relevant information can be important to both internal and
external agents that perform layout and access to layout tools that operate in a framework is key
to external agents that want to offload part of the layout task. This section contrasts the tools
available in PlanetLab and ProtoGENI and describes the ramifications on the GENIAPI design.

The PlanetLab configuration tools reflected through the SFA and the GENIAPI are the core tools
of PlanetLab itself, and tend to reflect their heritage of human-designed experiments. Node
locations are given by strings that are both human-readable and human-meaningful. Users
unfamiliar with the names of cities and states in certain parts of the world may have difficulty
deciding which nodes are best suited for their experiment.

To use the VINI system connect nodes using dedicated capacity, similar human interaction is
required. An experimenter must gather the VINI connection points and assemble the experiment
with both the location requirements above and the VINI interconnectivity information.

While this basic information is available through the GENIAPI interfaces, the client of those
interfaces, for example a TIED plug-in, must create the layout from that information itself.

PlanetLab users who go outside the SFA have more tools at their disposal. The SWORD[18]
resource discovery system is a sophisticated resource discovery system that effectively performs
advisory experiment layout based on constraints. The CoMon monitoring system[19] provides
current and past data on the performance of slices and nodes in PlanetLab that can be used to
guide experiment layout. Other similar tools appear in PlanetLab with regularity, but are
generally not accessible from the GENIAPI interface.

Our point is not that PlanetLab's tools are less accessible or complete than ProtoGENI's tools.
ProtoGENI's resource model requires layout tools to be useful at all while PlanetLab's requires
transparency. Our point is that the advertisement interface and sliver allocation interfaces should
be wide enough to pass relevant information to external agents as well as to internal agents.
ProtoGENI's layout tools are less configurable than the Emulab tool chain on which they are
based partially to present a simplified interface. PlanetLab's more interesting tools are
inaccessible. While part of this is a matter of allocating developer resources, part of it is making
sure that the GENIAPI supports communicating with such entities.

4.3 Slice Creation and Authorization

Perhaps surprisingly, different control frameworks ascribe different qualities to the fundamental
slice abstraction. In the case of ProtoGENI and PlanetLab, these differences are small to outside
users, but may shape the slice authority interface. This section describes the differences in
resource ownership that give rise to different authorization structures for slice creation.

In ProtoGENI and related systems creating an experiment/slice is a fairly common, low-
overhead operation with minimal repercussions. The resources are all contained in a single
physical area and experiments that misbehave can be stopped with relative ease.

PlanetLab is more of a true federation; though nodes are administered centrally, a misbehaving
node that becomes isolated from the central authority on the network can only be controlled by a

14

TIED Federation Plug-in Design Oct 6, 2010

set of human agents who physically control the machines. These agents, PI's in PlanetLab
parlance, are more trusted than even the most trusted ProtoGENI users, because PlanetLab
depends on them for correct operation. These differences are reflected in the authorization
structure of PlanetLab that are loosely captured in the GENIAPI.

In ProtoGENI or TIED/DETER, the right to create slices is almost a given for an experimenter.
Experimenters can be barred from doing so, but the perception is that it is a right that must be
removed rather than granted. Tying the slice creation right to resource provision as PlanetLab
does, results in a more controlled propagation of that right.

Without the interface to the slice authority, it is unclear what policies can be enforced on what
aspects of slice creation and user management. Again, any agent such as a TIED plug-in remains
tied to the non-standard mechanisms here. The more these diverge, the more difficult it will
become to unify them in the future.

The key for the GENIAPI here is to standardize the slice authority interface(s). Certainly no
single internal agent codebase can be expected to manipulate multiple control frameworks when
the code must be specialized for how each handles slice allocation and binding of users to slices.
The contrast between ProtoGENI's simple, loose slice creation requirements and PlanetLab's
tighter constraints shows that the operations on slices need to be carefully defined. The
GENIAPI operations serve both as a procedural breakdown of tasks and as a set of authorization
enforcement points.

The current state of slice state as directly manipulated registry entries both leaves the information
required for slice implementation very loose, and fails to clearly identify the objects about which
access control decisions must be made. The two different focuses of the PlanetLab and
ProtoGENI slice authorization systems offer interesting test cases of the evolving interfaces.

5 Summary

This document describes our position that the GENIAPI standardization effort is a valuable step
if control frameworks are to easily interoperate. Looking at the possibility of using this interface
across control frameworks has illuminated three key areas for improvement.

• Advertisements of resources should include information about the slicing model used to
allocate them.

• Aggregate Manager interfaces should be made wide enough to include specialized
control framework dependent tool access in a sufficiently standard way for agents to use
it.

• Interfaces to the Slice Authority need to be defined with an eye toward both standardizing
workflow and providing authorization enforcement.

We believe that the role of the current API in connecting control frameworks to aggregates is
somewhat hazy and have tried to capture the ongoing discussion about the shape control

15

TIED Federation Plug-in Design Oct 6, 2010

frameworks take. We have outlined those models and plan to continue to push the community
for clarity on these issues.

References

[1]Ted Faber, John Wroclawski, “Preliminary Review of the GENIAPI as Control Framework
Interoperability Architecture and TIED Federation Plug-in Candidate,”
http://groups.geni.net/geni/attachment/wiki/TIED/TIED_GENIAPI_v1.2.pdf

[2]The GENI Project Office, “Aggregate Manager API, v 1.0, 1 Sept 2010,
http://groups.geni.net/geni/attachment/wiki/GeniAggregateManagerApiDoc/GENI-SE-CF-
AMAPI-01.0.pdf

[3]DETER, “The DFA Plug-in Architecture,”
http://fedd.isi.deterlab.net/trac/wiki/FeddPluginArchitecture, 2010.

[4]Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad Mac Newbold,
Mike Hibler, Chad Barb, Abhijeet Joglekar, “An Integrated Experimental Environment for
Distributed Systems and Networks,” Proceedings of OSDI, (October 2002).

[5]ProtoGENI, http://www.protogeni.net/trac/protogeni/wiki.

[6]Thomas Lehman, Jerry Sobieski, Bijan Jabbari, “DRAGON: A Framework for Service
Provisioning in Heterogeneous Grid Networks,” in IEEE Communications Magazine, Vol. 44,
no. 3, March 2006.

[7]Larry Peterson, Robert Ricci, Aaron Falk, Jeff Chase, Slice-Based Federation Architecture,
July 2010, http://groups.geni.net/geni/wiki/SliceFedArch.

[8]The GENI API, http://groups.geni.net/geni/wiki/GeniApi.

[9]Larry Peterson, Soner Sevinc, Scott Baker, Tony Mack, Reid Moran, Faiyaz Ahmed,
PlanetLab Implementation of the Slice-Based Facility Architecture, Version 0.07,
http://svn.planet-lab.org/attachment/wiki/WikiStart/sfa-impl.pdf, Sept. 2009.

[10]OpenFlow, http://www.openflow.org, 2010.

[11]Guido Appenzeller, “OpenFlow Demos at GEC8,”
http://www.openflowswitch.org/wp/2010/07/gec8/, 2010.

[12]Tom Mitchell, GENI Aggregate Manager API, (slides),
http://groups.geni.net/geni/attachment/wiki/Gec8ControlFrameworkAgenda/GEC8-Mitchell-
AggregateManagerAPI.pdf, 2010.

[13]How to use ProtoGENI, http://www.protogeni.net/trac/protogeni/wiki/Tutorial, 2010.

[14]Users Guide to the SFI, http://svn.planet-lab.org/wiki/SFAGettingStartedGuide, 2010.

16

http://groups.geni.net/geni/attachment/wiki/TIED/TIED_GENIAPI_v1.2.pdf
http://svn.planet-lab.org/wiki/SFAGettingStartedGuide
http://www.protogeni.net/trac/protogeni/wiki/Tutorial
http://groups.geni.net/geni/attachment/wiki/Gec8ControlFrameworkAgenda/GEC8-Mitchell-AggregateManagerAPI.pdf
http://groups.geni.net/geni/attachment/wiki/Gec8ControlFrameworkAgenda/GEC8-Mitchell-AggregateManagerAPI.pdf
http://www.openflowswitch.org/wp/2010/07/gec8/
http://www.openflow.org/
http://svn.planet-lab.org/attachment/wiki/WikiStart/sfa-impl.pdf
http://groups.geni.net/geni/wiki/GeniApi
http://groups.geni.net/geni/wiki/SliceFedArch
http://www.protogeni.net/trac/protogeni/wiki
http://fedd.isi.deterlab.net/trac/wiki/FeddPluginArchitecture
http://groups.geni.net/geni/attachment/wiki/GeniAggregateManagerApiDoc/GENI-SE-CF-AMAPI-01.0.pdf
http://groups.geni.net/geni/attachment/wiki/GeniAggregateManagerApiDoc/GENI-SE-CF-AMAPI-01.0.pdf

TIED Federation Plug-in Design Oct 6, 2010

[15]Ted Faber, John Wroclawski, TIED Testbed Control Framework: Plug-in Design Document,
Feb 2010,
http://groups.geni.net/geni/attachment/wiki/TIEDProtoGENIPlugin/TIED_CF_plugin_design
_spec_v1.0.pdf .

[16]GENI Aggregate Manager API, http://groups.geni.net/geni/wiki/GAPI_AM_API, 2010.

[17]International Standard "Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 Object Identifier components" (ITU-T Rec. X.667, ISO/IEC
9834-8, 2004.

[18]Jeannie Albrecht, David Oppenheimer, David Patterson, and AminVandhat, “Design and
Implementation Trade-offs in Wide Area resource Discovery,” ACM Transactions on Internet
Technology, 8(4), September 2008.

[19]KyoungSoo Park, Vivek Pai, “CoMon: A Mostly Scalable Monitoring System for
PlanetLab,” ACM Operating Systems Review, 40(1), January 2006.

17

http://www.itu.int/ITU-T/studygroups/com17/oid.html
http://www.itu.int/ITU-T/studygroups/com17/oid.html
http://groups.geni.net/geni/wiki/GAPI_AM_API
http://groups.geni.net/geni/attachment/wiki/TIEDProtoGENIPlugin/TIED_CF_plugin_design_spec_v1.0.pdf
http://groups.geni.net/geni/attachment/wiki/TIEDProtoGENIPlugin/TIED_CF_plugin_design_spec_v1.0.pdf

	1 Introduction
	1.1 Interrelating Control Frameworks and Aggregates

	2 TIED Federation and Plug-Ins
	2.1 The Role of Plug-ins in the DCA

	3 The Slice-Based Federation Architecture and GENIAPI
	3.1 The SFA Document
	3.2 The GENIAPI Definition

	4 GENIAPI support for a TIED/PlanetLab Plug-in
	4.1 Resource Models
	4.2 Experiment Layout
	4.3 Slice Creation and Authorization

	5 Summary

