
Preliminary Review of the
GENIAPI as Control Framework
Interoperability Architecture and
TIED Federation Plug-In Candidate

Ted Faber, USC/ISI

John Wroclawski, USC/ISI

Version 1.2

August 12, 2010

Corresponding to GENIAPI version 0.9, as presented at the 8th GENI Engineering
Conference (GEC8), July 20-22, 2010.

TIED Federation Plug-in Design Aug 12, 2010

Table of Contents

1 Introduction...3

1.1 Interrelating Control Frameworks and Aggregates..4

1.2 Evaluation Summary..6

2 TIED Federation and Plug-Ins..7

2.1 The Role of Plug-ins in the DCA...9

3 The Slice-Based Federation Architecture and GENIAPI...10

3.1 The SFA Document..10

3.2 The GENIAPI Definition...12

4 TIED Plug-ins and the GENIAPI...12

5 The GENIAPI as an Interoperability Architecture...13

5.1 Identity..14

5.2 Credentials..15

5.3 Slices...16

5.4 Resource Specification...17

6 Summary...18

2

TIED Federation Plug-in Design Aug 12, 2010

1 Introduction

This document assesses the emerging GENIAPI standards and implementation as a potential
target plug-in API for the TIED/DETER1 control architecture, and as a general GENI
interoperability framework. This version 1.2 of the document corresponds to GENIAPI version
0.9, as outlined at the 8th GENI Engineering Conference (GEC8), July 20-22 2010.

We find that the current GENIAPI standard is difficult to adopt as a TIED plug-in target due to
its preliminary nature. At the current state of its development, we conclude that using it would
not result in a more portable plug-in, nor would it reduce developer workload when accessing
different control frameworks. We conclude that the standard is similarly underdeveloped as an
interoperability vehicle at this time. In both cases, however, we conclude that if efforts are made
to further standardize essential GENIAPI functions and features it can meet the desired goals.

The TIED federation framework has been used successfully to construct experimental
environments that span multiple dissimilar facilities. As one part of this process, a federated
experiment environment is collaboratively constructed and then instantiated. In the instantiation
phase, each facility maps the necessary control actions, resource access permissions and
principal identities into local actions, access controls and identities. Facilities do this by
implementing the required mapping functions and interfaces in the form of a plug-in, which is
written to a standard specification[1]. TIED/DETER currently supports plug-ins, and thus can
create federations across, the DETER testbed, Emulab[2] systems, ProtoGENI[3], deterministic-
resource networks controlled by DRAGON[4], and a number of other resource categories.

This federation system has developed in parallel with the Slice-based Federation Architecture2
(SFA) [5] originally outlined by members of the network testbed community under the auspices
of the GENI Planning Group, and further developed by the community under the umbrella of the
GENI Program Office and the GENI program.

The emerging GENIAPI[6] is a derivation and standardization of concepts from the SFA and the
existing implementations of these concepts in the individual GENI control frameworks, notably
the ProtoGENI[3] and PlanetLab[7] efforts. The goal of the GENIAPI is to standardize an API
for interoperability between existing and future control frameworks, components, and
aggregates. Practically, the design and standardization aspects are balanced against documenting
what the initial implementations have done and incorporating their insights. The GENIAPI
aggregate manager interface, which we describe in more detail below, has been implemented to
varying degrees in PlanetLab, ProtoGENI, and OpenFlow[8][9].

1The TIED/DETER control architecture is an evolving testbed control and federation architecture developed under
the dual auspices of the DETER Cybersecurity Testbed project and the TIED GENI project. We occasionally refer
to this architecture as either the “TIED” or the “DETER” architecture in cases where the dual TIED/DETER
formulation is excessively awkward and not needed for clarity.

2Initially referred to as the “Slice-based Facility Architecture”.

3

TIED Federation Plug-in Design Aug 12, 2010

The purpose of this document is to describe our review of the GENIAPI version of July, 2010 as
a target facility interface for the TIED federation architecture, and more generally as a vehicle
for creating points of interoperability between GENI components and control frameworks. It is
important to understand that the GENIAPI is at a very early point in its development, and that the
observations and conclusions of this document are dependent on the current state of the
GENIAPI. One objective of the document is to call out specific areas where progress in
developing the GENIAPI would significantly improve its usefulness as a TIED plug-in target
and as an interoperability mechanism.

1.1 Interrelating Control Frameworks and Aggregates

In order to understand and evaluate the GENIAPI we must understand how it relates to the SFA
and GENI interfaces as a whole. The GENIAPI is an interface between a control framework,
which implements the slice abstraction, and resource aggregates that control federated resources
that share an owner. Slices are collections of resources that the control framework acquires from
resource aggregates. A collection of resources allocated within a single aggregate is called a
sliver. At the request of a researcher, a control framework will allocate a slice and populate it
with slivers from one or more aggregates. A primary goal of the GENIAPI is that aggregates can
interoperate with multiple control frameworks[10].

The GENIAPI and the SFA document both concentrate on the definition of the aggregate
interface3, which is the interface between the control framework and the resource aggregate. The
interface between users and the control framework is not specified leaving two possibilities for
the control framework interface: either there is an unspecified interface to control framework
functions such as creating slices, or the control frameworks and aggregates export the same
interface recursively.

Figure 1 shows the case where the control framework has a distinct interface, which we call the
two-level model. A control framework implements the slice abstraction internally and collects
resources into slices on behalf of users using delegated credentials. Aggregate managers are
unaware of slices, they just understand slivers. Aggregates can export slivers to multiple control
frameworks.

3The SFA document calls this the slice interface.

4

Figure 1: Two-Level Control Framework Interface

TIED Federation Plug-in Design Aug 12, 2010

The recursive model is shown in Figure 2. In the recursive model, the interface between a user
and a control framework and the interface between control framework and an aggregate are
identical. Slices and slivers are much more similar in this model. The slice a control frame work
collects for a user is a collection of slivers from aggregate managers. Because the interface is
recursive, those slivers may in turn be made up of slivers from other managers exporting the
same interface. Aggregates can still export resources to different control frameworks, but each
aggregate may also act as a control framework.

The two-level model makes the distinction between control framework and aggregate manager
clear and separates the concerns of managing a slice abstraction and managing and reserving
resources. The recursive model is attractive in naturally supporting multi-level allocation
frameworks.

After reviewing the SFA, existing implementations, and the GENIAPI 0.9 specification, it
remains somewhat unclear which of these is intended. The SFA document and ProtoGENI
tutorial[11] both describe the aggregate manager calls as being made by users. One may
construe a “user call” as “a call on the user's behalf by a control framework” in the SFA
document, but the ProtoGENI tutorial indicates that the developers intend real user/aggregate
interactions. The tutorial also describes users addressing multiple aggregate managers. This
indicates that the ProtoGENI developers expect the aggregate interface to be visible to users as
in the recursive model, though they neither delineate nor advocate that model.

PlanetLab's SFA model[12] looks more like the two-level model in that users see one facility that
binds resources from different administrative domains into one slice. The names of the calls are
similar to those used in the aggregate interface, but the semantics differ sufficiently that the
developers appear to intend a distinct control framework interface.

The confusion about terminology and usage implies that there may be confusion in the GENI
community about the role of the aggregate manager interface. For the remainder of this
document we will take the GENIAPI interface to be the control framework to aggregate interface
used within a two-level interoperability framework.

5

Figure 2: Recursive Control Framework Interface

TIED Federation Plug-in Design Aug 12, 2010

1.2 Evaluation Summary

Our top level finding is that the GENIAPI is not at present a viable plug-in target because the
interface does not standardize enough of the resource allocation process. Ideally a plug-in
written to the GENIAPI would be able to access resources from a variety of control frameworks,
but the current state precludes that design.

The GENIAPI calls are sufficient for allocating resources once the plug-in has credentials and a
slice in hand, but the GENIAPI does not address how to acquire these necessary elements. In
practice, different control frameworks have different credentials and slice representations, with
different requirements and operations to acquire and manipulate them. Similarly, while the
GENIAPI provides a mechanism for delivering a resource request to the control framework, the
format of that request remains different for each framework. Much of the process of allocating
resources from a control framework remains unspecified.4

Specific operations and concepts that the GENIAPI does standardize that are of importance to
this conclusion are

• Basic resource allocation

• Separation of credentials and naming

• Soft-state management of slices and slice expiration

• Sliver shutdown

Specific operations and concepts that the GENIAPI does not standardize that are relevant to this
conclusion are:

• Slice creation or slice/sliver interaction

• Credential and access control formats and bindings

• Resource request formats

To clarify the first bullet in the second list above: in our description of the two-level model we
pointed out that in principle, aggregate managers could operate without knowledge of slices, but
as the API is specified and implemented this is not the case. The GENIAPI 0.9 requires a slice
in order to create slivers, as do ProtoGENI and PlanetLab implementations. If that constraint
were removed from the interface, a TIED plug-in could implement the GENI slice abstraction
internally, placing itself in the position of a control framework relative to the aggregate.
Conversely, if the GENIAPI supported a standard slice creation, as it would under the recursive
model, the plug-in could request GENI slices from the GENIAPI just an any other user. We
discuss the issues of slices in sliver creation further in Section 5.3.

4That said, we intend to update the TIED ProtoGENI plug-in to access ProtoGENI through the GENIAPI interfaces
in preference to the ProtoGENI interfaces to simplify the eventual transition to a complete GENIAPI. As we discuss
below, the plug-in will make slightly different use of these interfaces depending on the consensus GENIAPI model.

6

TIED Federation Plug-in Design Aug 12, 2010

We also consider the GENIAPI as a framework for exporting resources to multiple control
frameworks. We identify several places where the interface needs to become more solid in order
to provide enough standardization on which to code and discuss them in following sections.
These areas are, broadly:

• Identity definition

• Format and semantics of credentials

• Slice definition

• Resource specification

The rest of this document describes TIED and the existing GENIAPI effort, expands on the
specific areas in which we find that the GENIAPI is currently underdeveloped as the basis of a
multi-framework TIED plug-in, and outlines what we think are the most important next steps for
the GENI community to take in standardizing the API. Section 2 reviews the TIED system,
Section 3 describes the current state of the SFA document and GENIAPI specification, Section 4
presents in more detail our findings regarding the current issues and limitations of GENIAPI, and
Section 5 describes what we think are the essential missing pieces in the GENIAPI and the next
steps to addressing those shortcomings.

2 TIED Federation and Plug-Ins

We briefly outline the architecture and goals of the DETER Control Architecture (DCA). The
design document for the ProtoGENI plug-in[13] discusses this in more detail.

The DETER Control Architecture, on which DETER and TIED are based, supports as its basic
abstraction a substantial generalization of the Utah Emulab[2] model of experiments and
experiment creation. Some key properties of this model are as follows:

• Experiments consist of logical nodes, which may model many sorts of computing and
communication resources, interconnected by abstract links and/or LANs to form a
network topology in which the experiment is carried out. In the original Emulab model,
nodes are implemented primarily using general-purpose computers, while
interconnections are created using virtual networks implemented by off-the-shelf
Ethernet switches. Recent advancements in DETER and Emulab extend this model
somewhat.

• Experiments are generally isolated from one another, but make use of support services
provided by the testbed infrastructure, such as file systems shared between experiment
nodes and an event delivery system that enables loosely coordinated changes to the state
of experimental nodes.

• There is a general communication path between experiment nodes and and testbed
servers that can be used to remotely access the experiment interactively or
programmatically. Depending on experimenter's comfort and familiarity with testbed

7

TIED Federation Plug-in Design Aug 12, 2010

services, either standard testbed services or more ad hoc systems may be used to carry out
experimental procedures.

The DETER Control Architecture represents and implements a continuing evolution of this basic
testbed model.

Given this environment, the basic process of creating an experiment (slice) in the TIED/DETER
environment consists of three steps:

1. Acquiring access to individual testbeds consistent with local access control policies.

2. Allocating necessary resources to the experiment using local allocation strategies.

3. Forming the shared experimental connectivity and composing the required experiment
services.

Each of these functions is implemented within the control architecture of the DETER/TIED
system. Core elements of the DCA are shown in Figure 3 below.

8

Figure 3: The DETER Control Architecture

TIED Federation Plug-in Design Aug 12, 2010

Central to the DCA architecture is the federator. The federator and its control language, CEDL,
serve as a “narrow waist” within the design, providing a unifying functional layer between, on
the one hand, a broad range of specialized tools for user interaction and experiment
configuration, and on the other, the interconnected resources of multiple physical facilities with
different resources and capabilities. The federator acts as the interface between users who are
creating and controlling an experiment (slice) and the various federants who have supplied the
resources that constitute the slice. It presents users with a single interface for control, but
translates the creation of sub-experiments/slivers into the configuration system of the local
resource owners.

2.1 The Role of Plug-ins in the DCA

The previous section outlined the core elements of the DETER Control Architecture and
described the central role of the federator in this architecture. In implementation terms, the
federator is broken up into two parts, the experiment controller, which manages the slice or
experiment as a whole, and an access controller for each testbed or facility that contributes
resources. The access controller is responsible for translating the access control decisions from
the global domain into local configurations, for using local resource allocation systems to bind
resources to the experiment, and for configuring those resources to create the topology and
relevant services for the experiment.

Because the function of a access controller is specific to the class of testbed or facility it is
controlling, the access controller is implemented as a plug-in, with different plug-ins used to
interface with different classes of facility. The plug-shaped icons in the figure show the location
of these plug-ins within the DCA design. The figure shows that each plug-in supports two
interfaces, a standard one to the federator and a testbed-specific one to the testbed itself.5

Each plug-in may be implemented and deployed in several configurations, depending on the
operational and administrative requirements of the testbed being federated. The experiment
controller and access controller may run on the same machine, with the access controller
proxying requests back to the testbed it manages; the access controller may be co-located with
the testbed and accessed remotely by the experiment controller; or the plug-in may run on a third
machine unrelated to either the testbed it controls or the location of the experiment controller.
One can think of these layouts as placing more or less functionality in each of the plug-ins in
Figure 3.

Though each experiment/slice is controlled by one experiment controller, experiment controllers
are fairly lightweight entities. They are responsible for splitting the experiment up between
access controllers and managing the credentials of the researchers who are creating the
experiments. None of these responsibilities require that the experiment controller run on testbed
resources; experiment controllers that run on desktops and communicate with access controllers
running on testbed nodes is a likely configuration.

5In the figure it appears that plug-in code must be loaded in the federator code base itself, but this is a conceptual
diagram rather than an implementation block diagram. What is important is the standard interface between federator
and plug-in.

9

TIED Federation Plug-in Design Aug 12, 2010

3 The Slice-Based Federation Architecture and GENIAPI

The SFA document traces its history to the earliest days of the GENI development, and the
architecture it describes reflects many of the fundamental ideas behind GENI. Its original goal
was to define a minimal interface that conformant GENI implementations would export, and it
has become a touchstone for the architecture in general.

The GPO-managed prototyping and implementation phase encouraged multiple implementations
of the architecture defined in the forerunners of the current SFA document. These
implementations were called control frameworks. Confronted with the loose definitions of core
resource allocation and management functions, data structures, and authorization framework,
each control framework implementor made a set of design decisions and created a different
system within the overall confines of the architecture. The most successful of these
implementations, ProtoGENI and PlanetLab, extended their existing interfaces to include the
SFA interfaces. Of course, the underlying resource models of these and other control
frameworks strongly influenced how they interpreted and extended the SFA. While the
implementations shared a spirit, they differ in significant details.

The GENIAPI project is an attempt to reunify the various control frameworks to the point where
they can interoperate. The initial release of this effort is a specification and implementation of
the aggregate manager API[14]. That implementation is not a strict implementation of the SFA
aggregate manager interface (called the slice interface in the SFA document), and is, in many
ways, an improvement. We briefly review the current SFA document and the GENIAPI
interface.

3.1 The SFA Document

The SFA document defines the key entities, abstractions, and data flow for resource allocation in
GENI. It continues to be regularly revised, and the current version includes notes from the
authors[5].

The SFA lays out the basic players in the GENI ecosystem and then describes the key
abstractions of slice and sliver that underly much of GENI discourse. The SFA describes a sliver
as a collection of co-managed resources and slice as a collection of slivers and users bound to the
collection. It describes the life cycle of a slice, all indicative of the slice's central role in
experiment creation in GENI.

Components and aggregates are also defined as abstractions of co-managed resources that can be
multiplexed (sliced). The component/aggregate distinction is somewhat slippery, and is based on
whether one or more user-visible resources are managed by it. We generally use “aggregate” to
refer to this abstraction.

Naming and identification of actors in GENI is discussed in its own section of the SFA
document. A fairly intricate system of binding a principal to a public key, a universally unique
identifier[15], and a lifetime is put forward. These identifiers are called GIDs. The authors note
that none of the implementations have adopted this framework, and the section will be revised,

10

TIED Federation Plug-in Design Aug 12, 2010

though we will continue to use GID to indicate a principal identifier. The lack of agreement on
naming and identity remains an interoperation problem.

The Rspec, ticket, and credential are laid out as fundamental data types. The Rspec is a resource
specification used to request slivers and slices; a ticket is a signed Rspec bound to a GID and a
unique identifier used to denote a reservation from an aggregate. Though it is recognized as a
fundamental data structure, the Rspec's formats and requirements are not specified here.

Credentials are described as the binding of a particular privilege to a GID, and a set of privileges
are defined. Section 8 of the SFA refines this definition, and we discuss the refined definition
below.

Following this interfaces are defined, including the aggregate interface also defined and
implemented by the GENIAPI. The interface describes the binding of slivers to slices, though
the interfaces do not include an explicit parameter for the slice being bound. The binding is
described in the functional descriptions. Aggregates are aware of slices and carry out the process
of binding resources to them, which corresponds more closely to our recursive model.

The last two sections of the SFA are somewhat different in tone from those described above.
Section 7 titled “Authorization and Access Control,” is fairly heavily annotated with
disagreements. The authors agree that there are authorities responsible for authorizing access to
slice interfaces and separate authorities controlling resource allocation, but there seems to be less
agreement on how these authorizations are expressed. Discussions of group rights and individual
attributes are included.

The final section, “SFA Authorization Using Registered Capabilities” seems to be an example of
realizing the architecture, but there is no such explicit statement. The section introduces a new
architectural element – the registry – and expands the definition of credentials. This separation
of slice manipulation from earlier allocation mechanisms is closer to our two-level model.

A registry contains information bound to GIDs, including human-readable-names (HRNs). The
HRN defines a set of entities responsible for validating the identity of the principal having that
GID. This separation of validation information from the identity is somewhat confusing, and at
odds with the earlier interface definitions. Other data is maintained in the registry, including
real-world information about principals and slice information. Interfaces and privileges for
accessing the registry are defined.

The description of a credential is expanded upon, defining the credential as a binding between
principal GID, object GID (a sliver, slice, or registry), the privileges authorized and their lifetime
and an expression of how those rights might be delegated.

The final section's indications of a two-level model conflict with the earlier sections' implications
that the aggregate manager binds slivers to slices as in a recursive model. This is one of the
indications that the community has not formed a consensus around the overall role of the
aggregate interface.

11

TIED Federation Plug-in Design Aug 12, 2010

3.2 The GENIAPI Definition

The GENIAPI specification of the aggregate manager interface is an improvement on the SFA
document in some respects. The various slice and sliver operations include explicit naming of
the object to be manipulated rather than being part of the credential. At points in the interface
where data structures are evolving or extensible by nature the GENIAPI adopted appropriate
self-describing data structures to support evolution and extension.

The specification is a subset of both the SFA document and the various existing control
framework implementations. For example, none of the calls for ticket manipulation exist, which
may make writing resource brokers difficult.

This specification does not directly specify either Rspec or credential formats, although some
commonality is essential for long term interoperability. While the code picks an identity format
based on X.509 certificates, the documentation does not specify that format.

Finally, key operations like creating a slice or assigning credentials remain unspecified. This
may be because such definitions are missing from the SFA, because the implementations have
adopted different models. These missing interfaces may also reflect confusion between the two
usage models we have posited.

4 TIED Plug-ins and the GENIAPI

A TIED plug-in needs to:

1. Map TIED user's credentials into control framework credentials

2. Map requests into local request syntax and semantics

3. Allocate local resources

4. Integrate allocated resources into the shared environment

The standardized parts of the GENIAPI only simplify the third of those four steps, and, in fact,
the full SFA is only moderately more useful. Neither defines formats or semantics for identity,
credentials, or the Rspec in sufficient detail. As a result, a TIED plug-in using the GENIAPI
would still need to be specialized for each control framework.

Considering even the two frameworks that currently most closely implement the GENIAPI,
PlanetLab and ProtoGENI, each has their own assignment of identity and mechanism for getting
an identity. PlanetLab's HRN-based identity is usable across most PlanetLab as is ProtoGENI's,
but a plug-in will use one or the other, and that registration and mapping will be control
framework specific.

Slice creation on the two is also materially different. PlanetLab requires a fair amount of
information to be installed in a slice record in order to create a slice, while ProtoGENI requires
little more than a suggested name.

12

TIED Federation Plug-in Design Aug 12, 2010

Similarly a TIED plug-in will need to know if it must make its resource request in a ProtoGENI
format or a PlanetLab format. Each is slightly different and each is transparently passed through
the GENIAPI. While the same code can make the call to allocate a sliver, the formatting of the
request is different.

Finally, initial access to the allocated resources is managed differently on the two control
frameworks. Space for some of that configuration is in parameters to the GENIAPI CreateSliver
call (user keys), and some in the Rspec (software on allocated nodes).

For a TIED plug-in writer, the issue is not whether a plug-in can use the GENIAPI as defined,
but what benefit one might get from using it. Right now, the difference between using the
GENIAPI interfaces and using the published control framework interfaces is minimal, because
the services provided portably by the GENIAPI are not the difficult part of creating a plug-in.
We plan to port the existing ProtoGENI plug-in to use the GENIAPI interface; but we do not
expect this to simplify any future PlanetLab plug-in appreciably.

5 The GENIAPI as an Interoperability Architecture

While the current GENIAPI is insufficient to act as an interoperability fixed point, it is the right
place to try to enforce portability constraints on control frameworks. The control framework
implementers and designers have indicated a willingness to identify commonalities by
continuing to improve the SFA document. The GPO's push to standardize a set of useful
interfaces that is embodied in the GENIAPI is an indication that the ideas that the community
converges on can be moved into code quickly.

We need to both decide what aspects of the interface must be standardized and converge on the
requirements and descriptions of them. These choices should be minimally constraining while
offering sufficient detail to support interoperation. This process will require dedicated technical
and political work. This section discusses our recommendations on further areas of
standardization, and how these areas might be standardized. The areas discussed are identity,
credentials, slices, and the Rspec. How is the subject of each subsection.

Before proceeding with the discussion, two points should be noted.

First, we note that discussion about standardizing some and perhaps all of these areas has
previously occurred in the GENI community, dating back to the original planning group. In some
cases, explicit decisions were made not to attempt reaching global agreement or standardization
at that time. In some cases, the motivations and conditions underlying these past decisions may
still currently hold, while in others, they may not, and the potential for a common shared
approach may now be stronger, and the costs lower.

Second, we observe that small-s standardization is a social process. Successful standardization
implies an ongoing effort by the various GENI designers and stakeholders to work out a common
solution in sufficient detail to be useful, but also the recognition that the inability to do so may be
due to significant and valuable differences of perspective and vision, rather than “failure”. This
action is more in the spirit of the collaboration on the SFA document, than on specifications
being handed down from the GPO, though they are an important stakeholder. These

13

TIED Federation Plug-in Design Aug 12, 2010

recommendations are intended to influence the direction of collaborative effort, not to indicate a
need for administrative fiat. We note that interoperable technical alternatives to standardization
of each of the elements we outline are possible, and that in fact the essence of federation is the
lack of need to agree to uniformally common standards and policies.

5.1 Identity

The notion of an underlying identity for objects and principals is key to the system, and often
overloaded with other system semantics. The authors of the SFA and implementers of the
control frameworks seem to agree that identity is key but that we do not yet have a good handle
on it.

We call out a few very simple properties that an identity should have:

1. The holder of that identity must be able to independently prove they are the valid holder
of it.

2. Two parties referring to the holder of an identity must be certain they are referring to the
same entity.

3. The holder of an identity must be able to unambiguously attest to statements or requests
as being originated by it.

The first property divorces identity from any specific control framework or identity service.
Such services may later tie facts to an identity – such as a person's name or institution – but those
facts are separate from the identity itself. Independent self-certifying identities - without
additional semantic overloading - are key to scaling the system.

The second property insures that the identity is meaningful for reasoning about or delegating
rights to. Without this, systems within a framework would have difficulty operating, much less
systems between frameworks. Notice that this property does not rule out the possibility that one
person has multiple identities. A strict one-to-one mapping between people and identities would
be extremely difficult to enforce in practice. It is also sometimes useful for the same person or
entity to operate in separate guises.

The third property allows requests for service or delegations of authority to be validated when
the holder of the identity is disconnected or unavailable.

A public key of sufficient size exhibits these properties, and is a reasonable implementation of
self-certifying identity assuming that the holder of the identity protects and keeps the private
key6. The holder of a key can prove they are the rightful holder of the key by responding to a
challenge encrypted with the public key. As long as the private key is protected and the key size
large enough, duplicate keys are essentially impossible, and such a key can sign data in various
formats.

6Compromise of the private key means that permissions and facts about the old identity must be revoked. Any
identity system that relies on a secret has similar problems.

14

TIED Federation Plug-in Design Aug 12, 2010

Adopting public keys as an identity and choosing a canonical key format and representation
would go a long way toward establishing a GENI-wide identity. Keys can be used in a variety of
ways in existing protocols, and can be represented in a variety of ways. Saying that a GENI
identity is a 4096-bit RSA key does not prevent one control framework from expecting one to
prove identity using a self-signed X.509 certificate and another from using a PGP signature
format, but does provide a way that users and administrators can independently create unique
identities with proper semantics for GENI operations.

5.2 Credentials

In our view, credentials are less about specific rights that the holder of an identity possesses than
about describing facts about the holder than can be used to make authorization decisions. This
enables local resource owners or managers to control how their resources are used through
policies based on those facts. Of course, if the idea of explicitly granting privileges for specific
operations is attractive, such a specific credential falls within our view.

Currently, we believe credential formats are too loosely defined and their semantics too tightly
constrained to be useful for cross-framework interoperability.

Credential formats pose great difficulties for standardization in general, because with current
technologies the validity of a signed credential is tied to its formatting. In most cases,
reformatting a credential one did not issue is equivalent to forging it. This makes cross-
framework translation problematic.

Currently each control framework has its own credential format. Some use standard certificate
formats while others use locally defined data structures. Credentials are issued by the control
framework and have no meaning – in fact may not be interpretable – in other frameworks.

In practice, some choice of credential format or formats needs to be made. We argue that a few
formats that are in wide use should be adopted so that GENI can leverage existing authentication
and authorization systems. Shibboleth is an example of an authentication system that both
identifies users and attests to attributes about them that are used for authorization decisions.
X.509 credential formats are also valuable in that they are widely implemented.

We advocate using the X.509 credential format in order to take advantage of the significant
software that supports it. These credentials underly many real world applications and the
libraries that support them have been well-tested in the security community.

Rather than using the traditional X.509 hierarchical chain of endorsers, we self-sign certificates.
Each certificate is therefore the assertion of a credential by a single principal. Using self-signed
certificates allows us to leverage the format and libraries that support it while keeping our
lightweight identities.

Before we discuss the semantics to encode in the credentials, consider that within GENI, the
meaning of credentials is currently somewhat muddled. The SFA document describes the use of
credentials as capabilities, but the analogy is not perfect. Traditionally a capability both
references an object and confers rights to that object. These rights are independent of the
identity of the capability's holder. The credentials described in the SFA reference an object, but

15

TIED Federation Plug-in Design Aug 12, 2010

confer the associated rights only to a particular holder. These credentials are the equivalent of an
entry in an access control matrix: they prove a specific user has the right to carry out a set of
operations on a specific object.

In the SFA document, the authors use credentials to select the sliver on which to operate as well
as to prove that the entity requesting the operation has the right to do so. In particular the
operations that start, stop, reset and delete slivers all take only a credential, rather than a sliver
identifier and credentials7.

Furthermore, these credentials do not, in practice, encompass all the information used to make
allocation decisions. Elements of the requester's identity (or local facts about the user stored in
the registry) may give the requester priority or access to restricted resources. Such implicit
authorization information makes understanding the system and auditing decisions difficult
because an analyst or auditor can never be sure they have considered all facts relevant to a given
decision.

At the very least, the GENIAPI must specify a standard mechanism for acquiring credentials.
Even if credentials are only interpreted within one framework and are opaque to the interfaces,
users need to have a way to get them.

We believe that it is profitable to go farther and to adopt a credential framework that encodes
authorization reasoning and provides verifiable, auditable results. Our credential system of
choice is the ABAC system[16] developed by Stanford and Trusted Information Systems (now
Sparta), and further developed by ISI and Sparta. It defines an attribute-based model for
assigning rights among distributed cooperating principals using simple formal logics. The TIED
project wiki includes a more detailed discussion of using ABAC in GENI[17].

Whether ABAC is the credential system the community converges on or not, we believe that
there are significant benefits in allowing parties outside any control framework to issue
meaningful credentials. For example, an NSF principal could issue credentials identifying some
GIDs as GENI developers, and control frameworks could grant permissions based on that fact,
rather than a simple credential as defined in the SFA document.

This requires adopting a meaning in the credentials themselves, for example an encoding of
ABAC rules within a credential, and a set of formats so that third parties can issue the credentials
and be understood. Again, the GENIAPI definition offers an opportunity to specify and support
a credential format and meaning, if the community agrees to it.

5.3 Slices

Slice creation and manipulation affects interoperability at two places. The ability to create a
slice in a uniform way allows a researcher to create experiments through different control
frameworks; cleanly defining how much slice semantics interact with sliver allocation allows an
aggregate manager to interact with multiple control frameworks.

7The GENIAPI includes a name parameter in the subset of those calls it specifies.

16

TIED Federation Plug-in Design Aug 12, 2010

To manage the first, a standard interface for slice creation needs to be defined, either in the
unified recursive interface or as part of the control framework in the two-level model. Current
implementations of slice creation generally involve creating a registry entry, but the
requirements vary widely between implementations. A unified mechanism would simplify this
kind of interoperation.

In order for an aggregate manager to offer its resources to multiple control frameworks, it must
decouple the operation of creating a sliver from the operation of binding the sliver to a slice.
Currently an aggregate manager is aware of the slice to which its resources are bound, and
incidentally to elements of the slice's implementation. Because the slice abstraction is created by
the control framework, this binds aggregates to specific frameworks.

Sliver creation is tied to slices because GENI designers want to be able to guarantee that slices
can be controlled as a single unit, primarily for revocation in the case of misbehavior. For this
reason, the creation of a sliver and its binding to a slice were made atomic; all allocated
resources are bound to a slice. An unintended consequence of this is that aggregate managers are
tightly bound to their control framework implementations to effect the atomic operation. We
believe that the behavior can be maintained while removing the implementation dependence.

Maintaining this useful invariant requires standardizing the binding process while insulating the
aggregate from slice internals. The atomic action becomes a two-phase commit. A control
framework requests a sliver, the aggregate conditionally offers a sliver, the framework binds the
sliver to a slice using its implementation and informs the aggregate, and the aggregate finalizes
the resource reservation. If the binding fails the resources are released. Concretely, this requires
splitting RedeemTicket() and CreateSliver() into two calls.8

Insulating aggregate managers from slice implementation details is crucial to allowing
aggregates to offer resources to multiple control frameworks.

5.4 Resource Specification

Historically the Rspec has been a challenging data structure. It has been asked to play many
roles in the resource allocation process. Even in the current SFA document the Rspec is used
both to request resources and to describe the resources that have been granted, though the two
operations require somewhat different semantics. A request could sketch a range of acceptable
possibilities while a description of resources granted is necessarily concrete.

A more fundamental matter is that there are at least two philosophically different views of the
Rspec present within the community. One view sees the Rspec as essentially quite simple, a
straightforward data structure, perhaps extensible in format, but describing only the basic
properties of a resource. The other view sees the Rspec as having the properties of a rich
semantic description language, building a full ontology of resource descriptions and supporting
advanced machine reasoning capabilities. Given these views, it is apparent that no single Rspec
format is likely to emerge in the near future.

8A recursive model interface would add the two-phase equivalent interfaces and access control them.

17

TIED Federation Plug-in Design Aug 12, 2010

These views represent two points on a continuum between very semantically rich and very
declarative. As the community moves from Rspecs that enumerate the physical resources that
make up an experimental environment to Rspecs that describe the environment in sufficient
detail to reason about it productively, there are useful stopping points. For example, moving
from enumeration of resources to imposing constrained choices shifts the representation toward
richness and adds direct short-term benefits. ProtoGENI Rspecs have already become
semantically richer by adding virtual connections and generic node representations. We expect
this process of refinement to continue.

However, there are concrete interoperability problems today. Although there have been ad hoc
demonstrations of the ability to allocate resources from multiple control frameworks[9], there is
no standard way to ask for resources from aggregates attached to different control frameworks.

The GENIAPI command line tools include an “omnispec” format that is a wrapper around the
Rspecs used by the various control frameworks. The tool depends on translation modules
supplied from each control framework to the command line implementation. Command line
tools convert the omnispec to a local Rspec. The tool is less documented than one might hope
for, but we view it as a useful stop gap.

The existing Rspec formats are fairly close in format and in the semantic continuum. This would
be an excellent time to unify the formats, though we recognize the political and workload
constraints that make this difficult. Standardization costs time and effort, and after creating and
implementing the framework implementations would be functionally close to where they started.
New aggregate manager writers would have a significantly easier time, providing eventual
system wide benefits.

6 Summary

This document describes our position that the GENIAPI standardization effort is a valuable step
if control frameworks are to easily interoperate. While we believe this goal to be laudable and
the mechanism appropriate, the standard is not currently well enough developed for a TIED
plug-in to realize material benefits from using it.

We believe that the role of the current API in connecting control frameworks to aggregates is
somewhat hazy and have tried to articulate the possible alternative high-level frameworks, a two-
level system and a recursive system. While we do not take a position on which is superior, the
community does need to pick one.

In order for TIED or other cross framework applications to realize a benefit, the standard must
reflect an agreement on identity, credentials, and resource requests. In addition, the semantics
and interfaces of cross-framework slices need to be specified.

Once agreement on those issues is in place, the GENIAPI standard should act as an effective
interoperability tool.

18

TIED Federation Plug-in Design Aug 12, 2010

References

[1]DETER, “The DFA Plug-in Architecture,”
http://fedd.isi.deterlab.net/trac/wiki/FeddPluginArchitecture, 2010.

[2]Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad Mac Newbold,
Mike Hibler, Chad Barb, Abhijeet Joglekar, “An Integrated Experimental Environment for
Distributed Systems and Networks,” Proceedings of OSDI, (October 2002).

[3]ProtoGENI, http://www.protogeni.net/trac/protogeni/wiki.

[4]Thomas Lehman, Jerry Sobieski, Bijan Jabbari, “DRAGON: A Framework for Service
Provisioning in Heterogeneous Grid Networks,” in IEEE Communications Magazine, Vol. 44,
no. 3, March 2006.

[5]Larry Peterson, Robert Ricci, Aaron Falk, Jeff Chase, Slice-Based Federation Architecture,
July 2010, http://groups.geni.net/geni/wiki/SliceFedArch.

[6]The GENI API, http://groups.geni.net/geni/wiki/GeniApi.

[7]Larry Peterson, Soner Sevinc, Scott Baker, Tony Mack, Reid Moran, Faiyaz Ahmed,
PlanetLab Implementation of the Slice-Based Facility Architecture, Version 0.07,
http://svn.planet-lab.org/attachment/wiki/WikiStart/sfa-impl.pdf, Sept. 2009.

[8]OpenFlow, http://www.openflow.org, 2010.

[9]Guido Appenzeller, “OpenFlow Demos at GEC8,”
http://www.openflowswitch.org/wp/2010/07/gec8/, 2010.

[10]Tom Mitchell, GENI Aggregate Manager API, (slides),
http://groups.geni.net/geni/attachment/wiki/Gec8ControlFrameworkAgenda/GEC8-Mitchell-
AggregateManagerAPI.pdf, 2010.

[11]How to use ProtoGENI, http://www.protogeni.net/trac/protogeni/wiki/Tutorial, 2010.

[12]Users Guide to the SFI, http://svn.planet-lab.org/wiki/SFAGettingStartedGuide, 2010.

[13]Ted Faber, John Wroclawski, TIED Testbed Control Framework: Plug-in Design Document,
Feb 2010,
http://groups.geni.net/geni/attachment/wiki/TIEDProtoGENIPlugin/TIED_CF_plugin_design
_spec_v1.0.pdf .

[14]GENI Aggregate Manager API, http://groups.geni.net/geni/wiki/GAPI_AM_API, 2010.

[15]International Standard "Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 Object Identifier components" (ITU-T Rec. X.667, ISO/IEC
9834-8, 2004.

19

http://fedd.isi.deterlab.net/trac/wiki/FeddPluginArchitecture
http://www.itu.int/ITU-T/studygroups/com17/oid.html
http://www.itu.int/ITU-T/studygroups/com17/oid.html
http://groups.geni.net/geni/wiki/GAPI_AM_API
http://groups.geni.net/geni/attachment/wiki/TIEDProtoGENIPlugin/TIED_CF_plugin_design_spec_v1.0.pdf
http://groups.geni.net/geni/attachment/wiki/TIEDProtoGENIPlugin/TIED_CF_plugin_design_spec_v1.0.pdf
http://svn.planet-lab.org/wiki/SFAGettingStartedGuide
http://www.protogeni.net/trac/protogeni/wiki/Tutorial
http://groups.geni.net/geni/attachment/wiki/Gec8ControlFrameworkAgenda/GEC8-Mitchell-AggregateManagerAPI.pdf
http://groups.geni.net/geni/attachment/wiki/Gec8ControlFrameworkAgenda/GEC8-Mitchell-AggregateManagerAPI.pdf
http://www.openflowswitch.org/wp/2010/07/gec8/
http://www.openflow.org/
http://svn.planet-lab.org/attachment/wiki/WikiStart/sfa-impl.pdf
http://groups.geni.net/geni/wiki/GeniApi
http://groups.geni.net/geni/wiki/SliceFedArch
http://www.protogeni.net/trac/protogeni/wiki

TIED Federation Plug-in Design Aug 12, 2010

[16]Ninghui Li, John C. Mitchell, and William H. Winsborough, “Design of a Role-Based Trust
Management System,” in Proceedings of the 2002 IEEE Symposium on Security and Privacy, (May,
2002).

[17]ABAC Authorization Control Model And Discussion,
http://groups.geni.net/geni/wiki/TIEDABACModel, 2009.

20

http://groups.geni.net/geni/wiki/TIEDABACModel

	1 Introduction
	1.1 Interrelating Control Frameworks and Aggregates
	1.2 Evaluation Summary

	2 TIED Federation and Plug-Ins
	2.1 The Role of Plug-ins in the DCA

	3 The Slice-Based Federation Architecture and GENIAPI
	3.1 The SFA Document
	3.2 The GENIAPI Definition

	4 TIED Plug-ins and the GENIAPI
	5 The GENIAPI as an Interoperability Architecture
	5.1 Identity
	5.2 Credentials
	5.3 Slices
	5.4 Resource Specification

	6 Summary

