
S3 Monitor Version 1.0
Specifications and Integration Plan



1

Copyright c© 2011 Hewlett Packard
Copyright c© 2011 Purdue University

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and/or hardware specification (the “Work”) without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sub-
license, and/or sell copies of the Work and to permit persons to whom the Work is
furnished to do so, subject to the following conditions:
THE WORK IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
WORK OR THE USE OR OTHER DEALINGS IN THE WORK.

Please direct comments regarding this documentation or the S3 Monitor software
to fahmy@cs.purdue.edu and puneet.sharma@hp.com.



1 OVERVIEW 2

1 Overview
The Scalable Sensing Service (S3 Monitor) provides basic management services
for users to take controlled measurements between GENI nodes. A web interface
is provided to the user for scheduling and initiating measurements, managing on-
going measurements, and retrieving measurement results. The S3 Monitor service
manages the dissemination of schedules to nodes in the GENI slice and retrieval
of measurement results on behalf of the user. Measurement results are stored by
the system for later reference until purged by the user.

A GENI experimenter may deploy the S3 Monitor service to a GENI experi-
ment and use its facilities to collect network measurements within the experiment
slices.

2 Terminology
The following definitions give the normal meaning of terms used in this documen-
tation, including GENI terms as applied to S3 Monitor. In places where specific
usage differs from this section, the differences will be explained in the documen-
tation.

HRN The Human-Readable Name for a GENI resource.

Slice A GENI slice created via a Slice Authority. The normal S3 Monitor identi-
fication of a slice is by its HRN.

Sliver A GENI sliver create via a Component Manager or Slice Authority. The
normal S3 Monitor identification of a sliver is by its HRN.

Interface A network port (actual or emulated) on a GENI node which has been
assigned an IP address at sliver creation. S3 Monitor identifies interfaces by
their IP address.

Manifest An XML document provided by the Component Manager or Aggre-
gate Manager at the time of sliver creation, which describes the resources
available in a sliver.

Measurement An invocation of a measurement tool such as ping or traceroute.

Node, GENI Node A physical or virtual machine allocated to a GENI Sliver.



3 SYSTEM ARCHITECTURE 3

Sensor Pod A bundle of S3 Monitor software which is installed on each GENI
node that will perform measurements on behalf of S3 Monitor.

3 System Architecture
S3 Monitor includes two primary components (depicted in Figure 1):

1. Sensor pods: A sensor pod is a light-weight web service-enabled framework
which hosts measurement sensors (e.g., ping, pathChirp, tulip). The sensor
pod needs to run on each node which serves as an end point (source or sink)
of a measurement. The sensor pods can be deployed on GENI nodes, where
a GENI node is a reserved node used by a GENI experimenter.

2. Web application: This is the management application which triggers mea-
surements on the sensor pods and collects data. The web application (por-
tal) is written in Java. Users submit measurement requests through this
portal. The web application can be installed on any host which can estab-
lish communication with the GENI slice nodes that will perform the actual
measurements. This includes installation on a GENI node, or installation on
a third-party machine. Since the expectation is that the web application is a
long-lived service, installation on a GENI node is not recommended; rather,
it should normally be installed on a machine which is used to manage the
GENI nodes across slice instantiations.

4 Sensor Pod Architecture
The sensor pod is a web service-enabled framework to host sensors (e.g., sensor
for delay, loss, available bandwidth, bottleneck capacity). Figure 2 depicts the
components of the sensor pod. The sensor pod runs CGI scripts on an http server
(BOA). The CGI scripts are written in Python, and contain the framework code
for plugging in the sensors. The sensors extend the interface provided by S3 Mon-
itorto include any new measurement tool. The sensor execution, data collection,
and clean-up logic should be included in the code of each sensor. The sensor code
needs to be developed using Python in a maximum of five files. These files can be
uploaded to each node along with an xml schema defining the sensor. The schema
for the xml is provided with S3 Monitor.

The sensor pod includes the modules described in the following subsections.



4 SENSOR POD ARCHITECTURE 4

Figure 1: S3 Monitor architecture

Figure 2: Sensor pod components



4 SENSOR POD ARCHITECTURE 5

4.1 Boa Server
Boa is a single-threaded HTTP server. Boa does not fork a copy of itself or spawn
a thread to handle each incoming connection, but rather internally multiplexes the
connections. Boa only forks for CGI programs, automatic directory generation,
and automatic file gunzipping, each of which must be a separate process. The
primary design goals of Boa are speed and security.

4.2 Python CGI Module
A CGI script is invoked by an HTTP server, usually to process user input submit-
ted through an HTTP request.

Most often, CGI scripts live in the server special cgi-bin directory. The HTTP
server places all information about the request in the script shell environment,
executes the script, and sends the script output back to the client.

This module handles a number of cases and provides a simpler interface to the
Python script. It also provides a number of utilities that help in debugging scripts.

4.3 Sensor Pod Modules
This collection of modules includes the instant measurement module, configure
periodic measurements module, remove periodic measurements module, and mea-
surement results module.

4.3.1 Instant measurement module

This module triggers instant measurements, e.g., for latency, loss, or bandwidth
measurements between two nodes. The user can supply the parameters for the
measurement tool. The module then processes the input parameters, invokes the
requested command, triggers the measurement, and returns the result through the
response object.

4.3.2 Configure measurements module

This module configures periodic measurements at the specified time intervals,
and generates an identifier for each periodic measurements request. “crontab”
is scheduled with the unique identifier for the requested time interval. The peri-
odic measurements module runs the crontab, obtains the results, and stores them
into the data repository.



4 SENSOR POD ARCHITECTURE 6

4.3.3 Remove measurements module

This module removes the scheduled process using the identifier generated for ev-
ery crontab entry as described above.

4.3.4 Measurement result module

The result stored in the data repository is retrieved by this module.

4.4 Data Repository
Measurement data is stored into the data repository.

4.5 Sensors
Sensors are invoked by S3 Monitorto measure properties such as latency, loss,
bottleneck capacity, and available bandwidth between two nodes. Sensors can be
classified as basic sensors or aggregate sensors.

The sensor developer must provide the sensor functionality and an interface
(wrapper) for each sensor. The sensor interface must include three functions:
performing the measurement, obtaining the measurement results, and cleaning up
the measurement-related files. The sensor interface is written in Python. The user
needs to write the Python module following a template. This provides extensibility
(plug-ability) to the sensor pod architecture.

4.5.1 Basic sensors

Basic sensors are independent sensors that can be triggered to obtain the requested
measurement result directly, e.g., the latency sensor ping.

4.5.2 Aggregate sensors

Aggregate sensors are a collection/group of sensors. Once a user invokes a sensor,
the sensor may trigger another sensor and so on to obtain the result, e.g., capacity
sensor (pathrate).



5 WEB APPLICATION ARCHITECTURE 7

Figure 3: Web application components

5 Web Application Architecture
The web application (portal) provides management facilities to control the sensor
pods and maintain measurement data. Figure 3 depicts the components of the web
application. The application runs servlets on a Java web server (Tomcat). The
servlets act as interfaces to the web pages to process user requests and respond
accordingly. All responses from each servlet are in JSON format. The main pro-
cessing work is performed in the business logic part. There are dedicated service
modules to provide specific services (e.g., DatabaseService, FileUploadService).
Database access is through Hibernate (ORM). The web pages are written using
JSP technology, and Javascript is used as the client-side scripting framework.

The web application includes the modules described in the following subsec-
tions.

5.1 Tomcat server
Apache Tomcat is an open-source servlet container that implements the Java Servlet
and the Java Server Pages (JSP) specifications, and provides a “pure Java” HTTP
web server environment for Java code to run. S3 Monitor requires the Tomcat
server to run the JSP/servlets.



5 WEB APPLICATION ARCHITECTURE 8

5.1.1 Web user interface

The user interface of S3 Monitor is written in JSP along with HTML and Javascript,
so as to separate the page logic from the visual elements. In Javascript, the jQuery
library and other plug-ins have been used. The design of the front end is done
using CSS.

5.1.2 Server backend

The server backend processes the requests from the user interface module and
responds. This includes:

1. Filter:
A filter is an object that performs filtering tasks on either the request to a
resource (a servlet or static content), or on the response from a resource, or
both. S3 Monitor uses “Filter” to provide access control to the service.

2. Servlets:
A servlet is a Java programming language class used to extend the capabil-
ities of servers that host applications accessed via a request-response pro-
gramming model. Although servlets can respond to any type of request,
they are commonly used to extend the applications hosted by web servers.
S3 Monitor has one servlet for each JSP page.

3. Business Logic:
The business logic module is the actual processing unit of the S3 Monitor
web application. All S3 Monitor functionality is controlled from this mod-
ule. The business logic leverages the service module to process requests,
perform tasks, and handle errors. It also converts the response to the appro-
priate format (JSON) before transmitting it to the user interface.

4. Service Classes:
The service module implements all tasks that S3 Monitor needs to perform.
The tasks are grouped into classes as follows:

• Utilities:
All commonly-used functionality in S3 Monitor is defined in this mod-
ule.



6 INTEGRATION WITH CONTROL FRAMEWORKS AND OTHER GENI PROJECTS9

• Entities:
In this module, different entities of the service are defined and mapped
to the respective database tables.

• Response Object:
This module contains the Java objects to be mapped to JSON responses.

• Exception:
In this module, all the exceptions in the service are defined.

• Third-party libraries:
The S3 Monitor web application uses several open source libraries for
facilitating common application requirements, e.g., log4j, dom4j.

6 Integration with Control Frameworks and other
GENI Projects

S3 Monitor integrates with the GENI control frameworks to identify experimenter
resources within GENI slices. The S3 Monitor Sensor Pod installs on GENI-
allocated resources to perform active network measurements. Integration with
other GENI projects revolves around management of S3 Monitor sensor behavior
and sharing of measurement data.

6.1 Control Frameworks
Communication between S3 Monitor and the GENI control frameworks is through
RSpecs:

• S3 Monitor Sensor Pods can be deployed on ProtoGENI (http://www.
protogeni.net/trac/protogeni) experiment nodes by including
appropriate configuration in RSpec requests. Automated deployment on
other aggregate resources is in progress.

• The S3 Monitor web application uses RSpec manifests to identify possible
Sensor Pod locations within an experiment, and to configure the network
interfaces on Sensor Pod nodes.



6 INTEGRATION WITH CONTROL FRAMEWORKS AND OTHER GENI PROJECTS10

Integration with GENI-allocated resources is in the form of the S3 Monitor
Sensor Pod. The Sensor Pod must be ported to the OS images that run on GENI re-
sources. Sensor Pods for the default ProtoGENI image and the PlanetLab (http:
//groups.geni.net/geni/wiki/PlanetLab) image are provided al-
ready. More Sensor Pod ports (including ports to additional ProtoGENI images
as well as ORCA (https://geni-orca.renci.org/trac/wiki) EC2
images) will be provided in the future, as well as an automated or semi-automated
mechanism for porting the Sensor Pod to images which fulfill a basic set of re-
quirements.

6.2 Other GENI Projects
S3 Monitor can be integrated with several GENI measurement and management
projects to provide measurement capabilities which those projects lack. Integra-
tion with other GENI projects may also provide measurement or management
capabilities to S3 Monitor which it lacks.

• There are plans underway to deploy S3 Monitor sensor pods to INSTOOLS
(http://groups.geni.net/geni/wiki/InstrumentationTools)
instrumentized hosts in order to provide active measurement monitoring in-
formation to INSTOOLS users, as the current version of INSTOOLS pro-
vides only passive measurements.

• The same integration with INSTOOLS will provide a process for installing
S3 Monitor sensor pods to any host for which the INSTOOLS instrumen-
tize mechanism has been implemented, including non-ProtoGENI aggre-
gate hosts, via Flack (http://protogeni.net/flack).

• Data collected by S3 Monitor deployments can be provided to GENI Mea-
surement Data Archives. Integration with the existing Digital Object Reg-
istry (http://groups.geni.net/geni/wiki/DigitalObjectRegistry)
Measurement Data Archive prototype is planned, as well as eventual imple-
mentation of the GENI Measurement Data Schema for data communication
and storage once it is finalized.


