Performance Measurement of the Scalable Sensing
Service (S?) on the ProtoGENI Control Framework

Nabeel F. Butt and Ethan Blanton, Purdue University
Project Pls: Sonia Fahmy, Purdue University, and Puneet Sharma, HP Labs

January 27, 2011

Abstract

Accurate performance evaluation of any deployed system is impor-
tant to its user community. The distributed nature of network mea-
surement infrastructures escalates the complexity of this performance
evaluation. In this work, we evaluate the performance of a measure-
ment service, the S3 system [3]. We measure the performance in terms
of resource utilization and response times under increasing measure-
ment load. By response time, we mean the time between issuing a
measurement request to the time we start obtaining measurement re-
sults. Resource consumption of the measurement service is also an
important attribute to measure, since it can limit the scalability of the
system.

1 Overview of S3

S3 [1] is a service for real-time and configurable monitoring of large net-
worked systems. Its main components are the sensor pods, the sensing
information management system (SIMS), and scalable inference engines.
Sensor pods execute light-weight network measurement tools for sensing
network path properties between any two end-nodes. SIMS is the compo-
nent responsible for initiating the sensing (measurement) commands and
later collecting sensed information from the sensor pods. The main purpose
of inference engines is to leverage sensing tools on the sensor pods for more
efficient measurement. The S3 system we are profiling in this work is the
prototype deployed on the ProtoGENI infrastructure [2]. We evaluate S3
performance with respect to its resource consumption on both the end-nodes
and the network, i.e., we will compute the entire system footprint. We will
also evaluate response times for performing different operations with S3.

Parameter Settings
Tool Parameters | Values
Frequency | 10
Latency Interval 1
Count 10
Path Frequency | 10
PathChirp Frequency | 10
Pathrate Frequency | 10
Frequenc 10
Spruce Ca;l ’ 100 MB
. Lag 10
Tulip Count 10
Trials 10
SRS Interval 10
Frequency | 10
Configure (ping) | Interval 1
Count 10

Table 1: Parameter settings for the measurement tools used. Interval is sec-
onds between probe packets for a single measurement. Frequency is minutes
between measurements. Count is the number of probes generated for a single
measurement. Thus, the latency configuration in this table performs a mea-
surement every 10 minutes, sending 10 probe packets at 1 second intervals
for each measurement.

2 Experimental Setup

Our instrumentation of S uses light-weight processes running on all the end-
nodes as well as on the management node. These instrumentation processes
are used for initializing performance measurement tools like tcpdump, top,
iostat, vmstat, and collectl. They are also used for book-keeping purposes
including recording tasks and events. They provide an easy and effective
way to remotely monitor the resources used when running the experiments,
for measuring the S footprint.

3 Response Time

Our first experiment studies response time, defined as the time elapsed be-
tween issuing a command or initiating a measurement request and the time
we begin receiving response or output from the management node. Response
time is an important attribute to test the usability of the system.

An important feature of S? is that it supports a web interface to the

30000

25000 B

20000 B

15000 - B

Time (ms)

10000 B

5000 B

33
’50 "3,9
% %
7o) ®

Various Tools

Figure 1: Response time of the different measurement tools

SIMS for operating on the slices created by the users. To reduce error in
response time measurement, we subtract the round trip time (RTT) to the
management node from the response time. In this experiment, we use the
ping tool, and we send 10 packets with the interval between them set to
zero. We evaluate the response time in two different sets of experiments.
In the first set of experiments, we measure the response time of all the

50000

45000

40000 -
35000 B
30000 B
25000 -
20000 B
15000 -
10000 i
5000 B
L m B
© @ b4 o)0 {j\

Nodes

Time (ms)

Figure 2: Increase in response time as the number of nodes increases

network measurement tools available through S2. One thing to note is that
this is not the response time of the measurement tools themselves, but rather
the tools used through the S3 interface. The S? interface can be operated
remotely using a simple web client (web browser) or scripts. We list all the
parameter settings of the all the tools used in Table 1. Note that for different
settings, results could be dramatically different. We created multiple slices
using the ProtoGENI interface and we evaluate the response times of all the
tools. We completed 50 runs for each tool, and the results can be seen in
Fig. 1.

In the second set of experiments, we measure the response times of de-
ploying periodic measurements between every pair of nodes in the slice.
The values (shown in Fig. 2) are the maximum response time of all these
response times. This represents a worst-case load of all-pairs measurements.
The measurement deployed for this experiment is ping. We repeat the ex-
periment on different slices with different numbers of nodes, with 50 runs for
each slice. The results shown in Fig. 2 are the average of the results. This
experiment also provides insights into how the results vary as the number of
nodes increases. As can be seen in Fig. 2, there is a sudden increase in the
response times when the number of nodes is 4. The reason for this is that
not all nodes can be allocated at the same physical site, and so the nodes in
the slice are further apart. This is not the case when there are fewer than
four nodes. As the number of nodes increases, this effect is consistent and
we start seeing more stable results.

4 Resource Utilization

We now compute the S3 footprint in terms of CPU utilization, memory
utilization, disk I/O, and control traffic. These measurements are computed
at the management node as well as at the end-nodes running sensor pods
in the slice. CPU and memory utilization for the processes running these
nodes are queried by the ’collect]l’ tool, and examination of the information
in /proc. Disk I/O information is collected using the ’collectl’, ’lsof’, and
'df” tools. Control traffic measurements are taken with tcpdump.” In our
case, the control traffic consists of the traffic used to initiate the experiments
on sensor pods, the traffic to pull the results from the sensor pods, and finally
the traffic between the sensor pods themselves. It also includes the control
traffic of measurement tools (like traceroute, PathChirp, etc.).

We trigger periodic measurements on a slice and monitor the resource
utilization parameters on all the sensor pods within that slice as well as
on the management node. Before starting the experiments, we begin mon-
itoring the operating conditions on all machines. For CPU and memory
utilization we use the ’collectl’ tool, and for disk I/O we use ’collect]” and
information from /proc. We measure control traffic by using 'tcpdump’ to

CPU Utilization

Events

Figure 3: CPU utilization of the nodes

measure the amount of traffic that is sent to port 46000 on the sensor pods,
and all traffic on port 22 (since we use ’scp’ to fetch measurement results).
We also capture the traffic between all the sensor pods. This instrumenta-
tion is controlled by an XML-RPC service which is deployed on the machines
so that we can control and monitor them remotely. It also records events as
they occur.

For this experiment, we pre-select the source and destination nodes, and
run all the measurement tools on these two nodes. Meanwhile, we keep track
of the CPU, disk, memory, and network resources consumed on these nodes.
In figures 3, 4, 5, and 6, the graph on the bottom indicates when an event
has occurred. These events are in the same order as in Table 1.

Fig. 3 plots the CPU utilization of the two sensor nodes and the manage-
ment node, called node-SIM in the figure. It can be seen that the when an

node-02 —— |
‘ node-SIM ——

YRR ‘ k
m n,“ ﬂ". 14\ ‘ ” 1 ﬂ hl !“h‘

|
node-SIM —— |
|
| ‘[‘ ‘
bt Lmu ot b

Time

2000 *‘ H ‘

]«L MI \M \

Read KB/sec

Write KB/sec

Ll .W

Events

Figure 4: Disk utilization of the nodes

2.2e+06

node-01 ——
node-02
2e+06 - node-SIM

1.8e+06 -

1.6e+06 -

1.4e+06 -

1.2e+06

1e+06 [

Memory Utilization (bytes)

800000 [

600000 [

400000

Events

Time

Figure 5: Memory utilization of the nodes

event occurs, there are spikes in CPU utilization. The initial spikes are due
to deployment calls, and the later spikes are due to the periodic measure-
ments. The management node, node-SIM, seems to experience little load
due to measurements. On the other nodes, noticeable activity only happens
when experiments are initiated or the next measurement period starts. In
Fig. 4, we can see the disk usage of the nodes, including both data read
and data write rates. This figure shows that when a new measurement pe-
riod starts, there is a large amount of disk activity. This is because data
collected by the measurement tools is read and then stored for reporting
purposes. These readings are highly dependent on the measurements being
performed. Memory utilization on all three nodes is shown in Fig. 5. The
memory usage is only slightly affected by periodic measurements, the reason
being that most of the programs running are already in memory. In Fig. 6,
we can see the control traffic on the nodes. There are two iterations of this

node-01 ——
500 - node-02 B
node-SIM ——

node-01 ——
350 |- F I node-02 b
300 [‘ ‘ node-SIM —— -|

Outgoing Control traffic KB/sec Incoming Control traffic KB/sec

Events

Time

Figure 6: Control traffic on the nodes

Bl [e i
0

node-01 ——
nor

ol i |

i \H .
40 ﬁ,,lw,xim,.,. ‘LMMM YN TTRNTION| NI FRTRPSNPRTIVATOS,| THF T N L.IJ‘
AP TITTErT Tr

s u\
[q |

a0 [T RN PO T T T AT 0 TH YT

Users Joining Outgoing Control traffic KBsec Incoming Control traffic KB/sec
Users Joining Outgoing Control traffic KB/sec Incoming Control traffic KB/sec
8

Time Time

Figure 7: Control traffic for an in- Figure 8: Control traffic for an in-
terval of 10 minutes terval of 5 minutes

experiment in the graph, and therefore there are two spikes in the figure.
Note that we have assigned one node to be the source and the other the
destination. This can be seen in the figure, as the outgoing traffic of one
node mirrors the incoming traffic of the other. The management node later
pulls the data from both of these nodes.

5 Impact of Measurement Interval on Resource
Utilization

The management node pulls data from all the sensor pods after a specified
interval. We investigate how resource consumption is affected by changing
this interval. This interval should not be confused with the ’interval’ param-
eter used in tools like ping or traceroute, which controls timing between
individual probe packets. The resource we will examine in this experiment is
control traffic, as it is the aspect affected significantly by the interval. In S3,
the default value of this interval is 10 minutes. We will see how the control
traffic varies if we reduce this interval to 5 minutes. The only portion of
control traffic affected is the traffic generated when the management node
pulls measurement data from the sensor pods.

Control traffic bandwidth utilization can be seen in Fig. 7 and 8. The
obvious result of reducing the interval is less bursty traffic. At 10 minute
intervals, the highest reading for outgoing traffic from any sensor pod is
slightly above 170 KB/sec, whereas at 10 minute intervals it is reduced to
just under 90 KB/sec. The highest rate of incoming traffic at the SIMS
is also reduced from almost 950 KB/sec to almost 300 KB/sec. With the
smaller interval, however, exchange of control traffic from sensor pods to
the management node is more frequent. The best configuration for this in-
terval is highly dependent on the nature of the measurement profile. Some
measurement usage and scenarios may be tolerant of large intervals, while
others may be significantly affected by the collection delay these long inter-

vals induce.

6 Impact of Measurement Load on Response Time

In this experiment, we observe the change in response time as the number of
users issuing periodic measurement requests to the system increases. Issuing
a periodic measurement request is done in two steps. Users first have to
configure the periodic measurements they wish to perform by specifying
each tool to be used and the parameter settings for its invocation. Once this
configuration step is complete, the next step is to deploy the measurements.
After this deployment, the infrastructure starts performing the specified
measurements.

This experiment consists of deployments of periodic measurements in-
strumented to record the response times of both the configuration and de-
ployment steps. Results from this experiment can be seen in Fig. 9. As
shown in the figure, the response time for the ‘configure measurements’ step
varies from 450 ms to around 1400 ms. About 95% of the time, it is below
800 ms. The deployment step response time varies from 875 ms to 1400 ms.
It varies quite a bit as the number of users increases, but there does not
seem to be clear correlation with the number of users for this small number
of users. We will be investigating larger numbers of users in our future work.

7 Conclusions

In this report, we have examined a few performance characteristics of S [3].
We designed experiments to understand its impact on various resources such

1500

Configure Measurements
1400 Deploy|Measurements h 4

1300
1200
1100

1000

Resonse Time (ms)

Users Joining
IS
S
LI e

Time

Figure 9: Variation in response time with increasing number of users

as CPU, memory, disk, and network control traffic. We also examined how
the response times of different operations vary under changes in user load.

References

[1] Praveen Yalagandula, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and
Sung-Ju Lee. 2006. S3: a scalable sensing service for monitoring large
networked systems. In Proceedings of the 2006 SIGCOMM workshop on
Internet network management (INM ’06). ACM, New York, NY, USA,
71-76.

[2] http://www.protogeni.net/trac/protogeni

[3] http://illusion.hpl.hp.com:8180/geni/demo

