
Programming Assignments for
Graduate Students using GENI

Flow Management using OpenFlow on
GENI

Copyright c© 2012 Purdue University

Please direct comments regarding this document to fahmy@cs.purdue.edu.

1 Introduction
This project leverages resources on the ProtoGENI aggregate, using the Omni
GENI client [5]. The ProtoGENI tutorial [10] is a good starting point to become
familiar with the ProtoGENI aggregate. General documentation on the GENI
project and its available resources is found on the GENI wiki [6].

GENI resources are shared resources provided by members of the networking
community. Please release your slivers when you are done with them, or if you
are going to have to leave them for an extended period of time. Remember that
in many cases you may be able to perform an experiment, copy the data off to
another host, and release the sliver.

A moderately deep understanding of the OpenFlow [7] controller model and
API is required for this project. The OpenFlow specification, version 1.1.0 [9] is
a valuable reference for OpenFlow and the OpenFlow controller model.

1.1 Objectives
The objective of this assignment is to familiarize you with the software-defined
networking, as well OpenFlow technology. You will specifically learn about:

• Basic OpenFlow principles, capabilities, and limitations

• OpenFlow controller/switch interactions

• Implementation of a specific OpenFlow controller application

• Integration of external information with OpenFlow decision making

• Application of control loop theory to practical networking problems

1.2 Assignment Material
The assignment material for this assignment can be found at:
http://www.cs.purdue.edu/homes/fahmy/geni/geni-openflow.
tar.gz

1

http://www.cs.purdue.edu/homes/fahmy/geni/geni-openflow.tar.gz
http://www.cs.purdue.edu/homes/fahmy/geni/geni-openflow.tar.gz

1.3 Tools
Trema Each exercise in this assignment will require you to design and imple-
ment an OpenFlow controller. Numerous libraries and controller frameworks
are available for this task. The guidelines in this assignment assume that you
are using the Trema [11] controller framework. The Trema project web site,
http://trema.github.com/trema/, contains documentation, a number
of helpful examples, and some tutorial material for learning to use Trema.

Traffic Control (tc) The tc command is available in the GNU/Linux distribu-
tions on ProtoGENI nodes, found in the /sbin directory. This command manip-
ulates the Linux network forwarding tables, allowing for configuration of network
emulation, which allows the Linux kernel to emulate various network conditions
such as delay or loss. This effect is provided by the netem subcommand. In these
exercises, tcwill be used to modify network conditions. Example command lines
will be provided.

Iperf Iperf [2] is used to measure the bandwidth performance of Internet links.
In these exercises, it is used to study the behavior of TCP in the face of chang-
ing link characteristics. It is available on ProtoGENI nodes, located at /usr/
local/etc/emulab/emulab-iperf. Iperf runs as both a server and a
client. The server is started with the -s command line option, and listens for con-
nections from the client. The client is started with the -c <server> command
line option, and connects to the server and sends data at either the fastest possible
rate (given the underlying network) or a user-specified rate. The -p <port>
option to either the client or server mode of Iperf specifies that it should use the
specified port number. You will find Iperf useful in testing and evaluating your
implementations.

Telnet The Unix telnet <host> <port> command allows you to easily
connect to a specified TCP port on a remote host and manually input data. You
may find it useful for testing and evaluating your implementations.

2 Debugging an OpenFlow Controller
You will find it helpful to know what is going on inside your OpenFlow con-
troller and its associated switch when implementing these exercises. This section

2

http://trema.github.com/trema/
/usr/local/etc/emulab/emulab-iperf
/usr/local/etc/emulab/emulab-iperf

contains a few tips that may help you out if you are using the Open vSwitch im-
plementation provided with this handout. If you are using a hardware OpenFlow
switch, your instructor can help you find equivalent commands.

The Open vSwitch installation provided by the RSpec included in the handout
materials is located in /opt/openvswitch-1.6.1-F15. You will find Open
vSwitch commands in /opt/openvswitch-1.6.1-F15/bin and
/opt/openvswitch-1.6.1-F15/sbin. Some of these commands may be
helpful to you. If you add these paths to your shell’s $PATH, you will be able
to access their manual pages with man. Note that $PATH will not affect sudo,
so you will still have to provide the absolute path to sudo; the absolute path is
omitted from the following examples for clarity and formatting.

2.1 ovs-vsctl

Open vSwitch switches are primarily configured using the ovs-vsctl com-
mand. For exploring, you may find the ovs-vsctl show command useful,
as it dumps the status of all virtual switches on the local Open vSwitch instance.
Once you have some information on the local switch configurations, ovs-vsctl
provides a broad range of capabilities that you will likely find useful for expanding
your network setup to more complex configurations for testing and verification.
In particular, the subcommands add-br, add-port, and set-controller
may be of interest.

2.2 ovs-ofctl

The switch host configured by the handout materials listens for incoming Open-
Flow connections on localhost port 6634. You can use this to query the switch
state using the ovs-ofctl command. In particular, you may find the
dump-tables and dump-flows subcommands useful. For example, sudo
ovs-ofctl dump-flows tcp:127.0.0.1:6634 will output lines that
look like this:
cookie=0x4, duration=6112.717s, table=0, n packets=1,
n bytes=74, idle age=78,priority=5,tcp,
nw src=10.10.10.0/24 actions=CONTROLLER:65535

This indicates that any TCP segment with source IP in the 10.10.10.0/24 sub-
net should be sent to the OpenFlow controller for processing, that it has been 78
seconds since such a segment was last seen, that one such segment has been seen
so far, and the total number of bytes in packets matching this rule is 74. The other

3

fields are perhaps interesting, but you will probably not need them for debugging.
(Unless, of course, you choose to use multiple tables — an exercise in OpenFlow
1.1 functionality left to the reader.)

2.3 Unix utilities
You will want to use a variety of Unix utilities, in addition to the tools listed in Sec-
tion 1.3, to test your controllers. The standard ping and /usr/sbin/arping
tools are useful for debugging connectivity (but make sure your controller passes
ICMP ECHO REQUEST and REPLY packets and ARP traffic, respectively!), and
the command netstat -anwill show all active network connections on a Unix
host; the TCP connections of interest in this exercise will be at the top of the list-
ing. The format of netstat output is out of the scope of this document, but
information is available online and in the manual pages.

3 Exercises

3.1 Building a Firewall with OpenFlow
A firewall observes the packets that pass through it, and uses a set of rules to
determine whether any given packet should be allowed to pass. A stateless firewall
does this using only the rules and the current packet. A stateful firewall keeps track
of the packets it has seen in the past, and uses information about them, along with
the rules, to make its determinations.

In this exercise, you will build a stateful firewall controller for TCP [1] con-
nections in OpenFlow. The first packet of each connection will be handled by
the controller, but all other connection packets will be handled by the OpenFlow-
enabled router or switch without contacting your controller. This design will allow
you to write powerful firewall rule sets without unduly impacting packet forward-
ing speeds. Your controller will parse a simple configuration file to load its rules.
Complete stateful firewalls often handle multiple TCP/IP protocols (generally at
least both TCP and UDP), track transport protocol operational states, and often
understand some application protocols, particularly those utilizing multiple trans-
port streams (such as FTP, SIP, and DHCP). The firewall you will implement for
this exercise, however, needs handle only TCP, and will not directly process packet
headers or data.

4

Figure 1: Simple firewall testing topology.

Network Setup

In the assignment materials tarball provided by your instructor, you will find an
RSpec called fw.rspec. It implements the topology shown in Fig. 1. The spe-
cific host names allocated for your experiment will be different, but the topology
will be isomorphic to Fig. 1. The host labeled left in the figure is “behind”
the firewall, implemented by the Open vSwitch host labeled switch. The host
labeled router handles IP routing for the firewalled network, and every host on
the other side of this router (the host labeled right being the only example on
this topology; you may wish to add others for your testing and experimentation)
are “outside” of the firewall.

The provided RSpec and the files it installs on the hosts it allocates will con-
figure a complete, working network with an Open vSwitch running on the host
labeled switch. The Open vSwitch switch is configured to connect to a con-
troller on localhost (that is, the switch host), but no controller is started; until a
controller is started on localhost, the Open vSwitch will act like a normal learning
switch, forwarding all packets to the appropriate interface based on MAC address.
Trema is installed in /opt/trema-trema-8e97343. Once you have imple-
mented your switch, you can simply use this Trema install to run it and the Open
vSwitch will obey its configuration.

You can test that the network configured correctly by waiting a few moments
after Flack or Omni (or whatever GENI tool you are using) suggests that the sliver
is ready, and running ping right from the host allocated for left or vice-
versa. Since the fallback switch configuration will act like a normal learning

5

switch, the ping packets should go through.

Firewall Configuration

The firewall configuration language is very simple. All flows not specified in
the configuration are assumed to be forbidden, and the default packet processing
policy on the OpenFlow device you are managing should be to drop packets. The
configuration language will specify, one flow to a line, the TCP flows that should
be permitted to pass the firewall. The syntax is:

<ip>[/<netmask>] <port> <ip>[/<netmask>] <port>

Items in angle brackets (<>) represent variable values, items in square brackets
([]) represent optional syntax, and unquoted characters (e.g., the slash characters)
represent themselves. The first subnet (IP address plus mask length) and port
number are the subnet and port number of the host initiating the connection (that
is, sending the first bare SYN), and the second subnet and port number are those of
the host accepting the connection. IP addresses are specified as dotted quads (e.g.,
192.168.1.0) and netmasks as bit lengths (e.g., 24). If a netmask is missing
(the IP address for a given subnet is not followed by a slash and an integer), it is
equivalent to /32. Port numbers are integers. Either or both of the IP address or
port numbers may be replaced by the word any, equivalent to 0.0.0.0/0 in
the case of IP address, or to any port number, in the case of port numbers.

A sample configuration that implements a firewall permitting inbound con-
nections to a web server at IP address 192.168.1.1 on port 80, and any outbound
connections initiated by hosts inside the firewall (protecting 192.168.1.0/24) is as
follows:

any any 192.168.1.1 80
192.168.1.0/24 any any any

All whitespace will be a single ASCII space character, all newlines will be a
single ASCII newline character (0x0a) Empty lines (two newlines back-to-back)
are permitted.

A connection is allowable if it matches any rule. A connection matches a rule
if all four elements of the four-tuple match. Subnet matching uses standard rules,
expressed in this pseudocode:

6

boolean subnet_match(IP subnet, int bits, IP addr) {
int32 bitmask = ˜((1 << 32 - bits) - 1);
IP addrnet = addr & bitmask;
return addrnet ˆ subnet == 0;

}

Note that rules are not bidirectional; the presence of the first rule in this set
does not imply the second:

192.168.1.0/24 any any any
any any 192.168.1.0/24 any

This means that the first packet the controller sees that matches a flow causes
the flow to be allowed. Packets that would trigger a reply that would be allowed
are not necessarily allowed.

The name of a firewall configuration file will be provided on the controller
command line. To provide an argument to your controller application, it must be
included with the controller file name. For example, to configure your firewall
found in firewall.rb to load fw.conf, you would invoke:
trema run ’firewall.rb fw.conf’

You will then find [’firewall.rb’, ’fw.conf’] in ARGV when your
controller’s start method is invoked.

Firewall Semantics

When an OpenFlow device connects to your controller (that is, you receive a
switch_ready controller event), your controller should send it instructions to:

• Pass all packets matching allowed connections to your controller

• Drop all other packets

Priorities are going to be critical to the correct operation of your controller, so
set them carefully. Higher priority rules match before lower priority rules, and the
first matching rule is followed. See Section 3.4 of the OpenFlow specification [8]
for more details on flow matching.

Upon receiving a packet from the OpenFlow device (via a OFPT_PACKET_IN
message), your controller should:

• Ensure that the packet matches a rule in the configuration

7

• Insert a flow match in the OpenFlow device for the complete four-tuple
matching the incoming packet

• Insert a flow match in the OpenFlow device for the complete four-tuple
matching the opposite direction of the same connection

• Instruct the OpenFlow device to forward the incoming packet normally (us-
ing OFPP_NORMAL)

Packets which do not match a rule on the controller should be denied. Because
your initial device configuration eliminates most of these packets outright, your
controller should not see a large number of these packets.

Because this firewall implementation cannot track the actual state of the TCP
connections it is managing, removing accepted connections from the forwarding
tables on the OpenFlow device must be handled by timers. OpenFlow rules can
be removed by an idle timer as well as expired a fixed period after insertion. For
this firewall, use an idle timer of 300 seconds.

Limitations of this Approach

Note that this approach to implementing a firewall has drawbacks. Because the
OpenFlow controller does not, and can not efficiently, track the precise state of the
TCP flow it is forwarding, the rules are a little bit sloppy. In particular, connec-
tions “in progress” when the firewall comes online are not differentiated from new
connections created after the firewall is initialized, and connection closings can-
not be detected by the controller. The former can be managed by inspecting the
packet headers included in the OFPT_PACKET_IN message when a connection
is opened, but the latter cannot easily be mitigated. This means that connections
with long idle times (and 300 s is not particularly unusual, in the long tail of TCP
connection statistics!) will be disconnected unnecessarily, and new connections
reusing recent four-tuples may be passed through the firewall without examination
by the controller.

Hints

The following list of hints may help you design and debug your implementation
more rapidly.

8

• Remember that OpenFlow switches are an Ethernet switch first and fore-
most, and that not all packets on an Ethernet are IP. In particular, your hosts
will require ARP in order to pass IP traffic through the switch!

• You may pass ICMP packets without limitation, to make debugging easier.

• The Trema Match class has a compare() method that accepts a Match
argument and may be useful to you — consider the ExactMatch#from()
method in conjunction.

Extra Credit

For extra credit (if permitted by your instructor), generate TCP reset segment at
the firewall to reset rejected connections.

3.2 Extending the Firewall
OpenFlow controllers can also make complex flow decisions based on arbitrary
state. This is one benefit to removing the controller from the network device
— the controller is free to perform any computation required over whatever data
is available when making decisions, rather than being constrained to the limited
computing power and storage of the network device. For this exercise, you will
extend the firewall described in Section 3.1 to include rudimentary denial of ser-
vice prevention using this capability.

Extended Firewall Configuration

You will extend the firewall configuration language to accept an additional final
parameter, an integer representing the number of allowable connections matching
a given rule at any point in time. As before, the keyword any will be used to indi-
cate that no limiting is to be performed on the rule. The new firewall configuration
syntax is:

<ip>/<netmask> <port> <ip>/<netmask> <port> <limit>

Connection Limiting Semantics

The extended firewall will perform flow matching as before, with one added
check: if the number of existing flows allowed by a given rule exceeds the limit

9

specified in the configuration, a new flow matching that rule will be denied. The
number of existing flows matching a given rule is computed as the number of cur-
rently active flow matches in the OpenFlow device for that rule. You may wish to
look into the OFPT_FLOW_REMOVED message for help in implementing this. If
a connection rule specifies any as the flow limit, no limiting will be performed
by the controller.

Note that the timeout-based nature of flow removal dictates that small connec-
tion limits will be quite limiting. Keep this in mind when testing your firewall!

3.3 Load Balancing
Load balancing in computer networking is the division of network traffic between
two or more network devices or paths, typically for the purpose of achieving
higher total throughput than either one path, ensuring a specific maximum latency
or minimum bandwidth to some or all flows, or similar purposes. For this exer-
cise, you will design a load-balancing OpenFlow controller capable of collecting
external data and using it to divide traffic between dissimilar network paths so as
to achieve full bandwidth utilization with minimal queuing delays.

An interesting property of removing the controller from an OpenFlow device
and placing it in an external system of arbitrary computing power and storage
capability is that decision-making for network flows based on external state be-
comes reasonable. Traditional routing and switching devices make flow decisions
based largely on local data (or perhaps data from adjacent network devices), but
an OpenFlow controller can collect data from servers, network devices, or any
other convenient source, and use this data to direct incoming flows.

For the purpose of this exercise, data collection will be limited to the band-
width and queue occupancy of two emulated network links.

Experimental Setup

Use the supplied lb.rspec to instantiate a sliver, via either Omni or Flack. Your
GENI resources will be configured in a manner similar to Fig. 2. The various parts
of the diagram are as follows:

• Inside and Outside Nodes: These nodes can be any exclusive ProtoGENI
PCs.

10

Figure 2: Example load balancing topology

• Switch: The role of the Open vSwitch node may be played either by a soft-
ware Open vSwitch installation on a ProtoGENI node, or by the OpenFlow
switches available in GENI — consult your instructor.

• Traffic Shaping Nodes (Left and Right): These are Linux hosts with two
network interfaces. You can configure netem on the two traffic shaping
nodes to have differing characteristics; the specific values don’t matter, as
long as they are reasonable. (No slower than a few hundred kbps, no faster
than a few tens of Mbps with 0-100 ms of delay would be a good guide-
line.) Use several different bandwidth combinations as you test your load
balancer.

• Aggregator: This node is a Linux host running Open vSwitch with a switch
controller that will cause TCP connections to “follow” the decisions made
by your OpenFlow controller on the Switch node.

11

Linux netem Use the tc command to enable and configure delay and band-
width constraints on the outgoing interfaces for traffic traveling from the Open-
Flow switch to the Aggregator node. To configure a path with 20 Mbps bandwidth
and a 20 ms delay on eth2, you would issue the command:
sudo tc qdisc add dev eth2 root handle 1:0 \
netem delay 20ms
sudo tc qdisc add dev eth2 parent 1:0 \
tbf rate 20mbit buffer 20000 limit 16000

See the tc(8) and tc-tbf (8) manual pages for more information on configur-
ing tc token bucket filters as in the second command line. Use the tc qdisc
change command to reconfigure existing links, instead of tc qdisc add.

The outgoing links in the provided lb.rspec are numbered 192.168.4.1 and
192.168.5.1 for left and right, respectively.

Balancing the Load

The goal of your OpenFlow controller will be to achieve full bandwidth utilization
with minimal queuing delays of the two links between the OpenFlow switch and
the Aggregator host. In order to accomplish this, your OpenFlow switch will
intelligently divide TCP flows between the two paths. The intelligence for this
decision will come from bandwidth and queuing status reports from the two traffic
shaping nodes representing the alternate paths.

When the network is lightly loaded, flows may be directed toward either path,
as neither path exhibits queuing delays and both paths are largely unloaded. As
network load increases, however, your controller should direct flows toward the
least loaded fork in the path, as defined by occupied bandwidth for links that are
not yet near capacity and queue depth for links that are near capacity.

Because TCP traffic is bursty and unpredictable, your controller will not be
able to perfectly balance the flows between these links. However, as more TCP
flows are combined on the links, their combined congestion control behaviors
will allow you to utilize the links to near capacity, with queuing delays that are
roughly balanced. Your controller need not re-balance flows that have previously
been assigned, but you may do so if you like.

The binding of OpenFlow port numbers to logical topology links can be found
in the file /tmp/portmap on the switch node when the provided RSpec boots.
It consists of three lines, each containing one logical link name (left, right, and
outside) and an integer indicating the port on which the corresponding link is
connected. You may use this information in your controller configuration if it is

12

helpful.
You will find an example OpenFlow controller that arbitrarily assigns incom-

ing TCP connections to alternating paths in the assignment materials in the file
load-balancer.rb. This simple controller can be used as a starting point for
your controller if you desire. Examining its behavior may also prove instructive;
you should see that its effectiveness at achieving the assignment goals falls off as
the imbalance between balanced link capacities or delays grows.

Gathering Information

The information you will use to inform your OpenFlow controller about the
state of the two load-balanced paths will be gathered from the traffic shaping hosts.
This information can be parsed out of the file /proc/net/dev, which contains
a line for each interface on the machine, as well as the tc -p qdisc show
command, which displays the number of packets in the token bucket queue. As
TCP connections take some time to converge on a stable bandwidth utilization,
you may want to collect these statistics once every few seconds, and smooth the
values you receive over the intervening time periods.

You may find the file /tmp/ifmap on the traffic shaping nodes useful. It is
created at system startup, and identifies the inside- and outside-facing interfaces
with lines such as:

inside eth2
outside eth1

The first word on the line is the “direction” of the interface — toward the
inside or outside of the network diagram in Fig. 2. The second is the interface
name as found in /proc/net/dev.

You are free to communicate these network statistics from the traffic shaping
nodes to your OpenFlow controller in any fashion you like. You may want to use
a web service, or transfer the data via an external daemon and query a statistics
file from the controller. Keep in mind that flow creation decisions need to be made
rather quickly, to prevent retransmissions on the connecting host.

Hints

• Remember that the TCP control loop is rather slow — on the order of several
round trip times for the TCP connection. This means your load balancing
control loop should be slow.

13

• You may wish to review control theory, as well as TCP congestion control
and avoidance principles.

• Without rebalancing, “correcting” a severe imbalance may be difficult or
impossible. For testing purposes, add flows to the path slowly and wait for
things to stabilize.

• Some thoughts on reducing the flow count when load balancing via Open-
Flow can be found in Wang et al. [12] You are not required to implement
these techniques, but may find them helpful.

• Remember that the default OpenFlow policy for your switch or Open vSwitch
instance will likely be to send any packets that do not match a flow spec to
the controller, so you will have to handle or discard these packets.

• You will want your load balancer to communicate with the traffic shaping
nodes via their administrative IP address, available in the slice manifest.

• If packet processing on the OpenFlow controller blocks for communication
with the traffic shaping nodes, TCP performance may suffer. Use require
’threads’, Thread, and Mutex to fetch load information in a separate
thread.

• The OpenFlow debugging hints from Section 3.1 remain relevant for this
exercise.

References
[1] Information Sciences Institute. Transmission control protocol. RFC 793.

Available at http://www.ietf.org/rfc/rfc793.txt. Edited by
Jon Postel.

[2] Iperf. http://iperf.sourceforge.net/.

[3] Net-SNMP. http://net-snmp.sourceforge.net/.

[4] Ruby SNMP. http://snmplib.rubyforge.org/.

[5] The Geni Project Office Wiki. Omni. http://trac.gpolab.bbn.
com/gcf/wiki/Omni.

14

http://www.ietf.org/rfc/rfc793.txt
http://iperf.sourceforge.net/
http://net-snmp.sourceforge.net/
http://snmplib.rubyforge.org/
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://trac.gpolab.bbn.com/gcf/wiki/Omni

[6] The GENI wiki. http://groups.geni.net/geni.

[7] The Open Networking Foundation. OpenFlow. http://www.
openflow.org/.

[8] The Open Networking Foundation. OpenFlow switch specification: Ver-
sion 1.0.0 (wire protocol 0x01). http://www.openflow.org/
documents/openflow-spec-v1.0.0.pdf.

[9] The Open Networking Foundation. OpenFlow switch specification: Ver-
sion 1.1.0 implemented (wire protocol 0x02). http://www.openflow.
org/documents/openflow-spec-v1.1.0.pdf.

[10] The ProtoGENI Project Wiki. ProtoGENI tutorial. http://www.
protogeni.net/trac/protogeni/wiki/Tutorial.

[11] Trema: Full-Stack OpenFlow Framework in Ruby and C. http://
trema.github.com/trema/.

[12] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based server load balanc-
ing gone wild. In Proceedings of the Workshop on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE),
Mar. 2011.

15

http://groups.geni.net/geni
http://www.openflow.org/
http://www.openflow.org/
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.protogeni.net/trac/protogeni/wiki/Tutorial
http://www.protogeni.net/trac/protogeni/wiki/Tutorial
http://trema.github.com/trema/
http://trema.github.com/trema/

	Introduction
	Objectives
	Assignment Material
	Tools

	Debugging an OpenFlow Controller
	ovs-vsctl
	ovs-ofctl
	Unix utilities

	Exercises
	Building a Firewall with OpenFlow
	Extending the Firewall
	Load Balancing

