
Programming Assignments for
Graduate Students using GENI



1

Copyright c© 2011 Purdue University

Please direct comments regarding this document to fahmy@cs.purdue.edu.



1 OVERVIEW 2

1 Overview

This document summarizes ideas for possible programming assignments (exer-
cises) for use by instructors of a graduate networking class (e.g., CS 536 in the
Computer Science Department at Purdue University).

All assignments require executing experiments on the GENI infrastructure,
and understanding the performance that various GENI nodes and links provide.
One of the planned assignments includes non-IP based networking.

The planned courseware will have two components: (1) Student assignments
and (2) Instructor material that includes solutions to the assignments.

2 Prerequisites

The assignments assume knowledge of the C programming language, basic oper-
ating systems concepts including multi-threading, and basic networking concepts.
The graduate networking course that will use the planned assignments covers the
following material:

• Network services and applications: DNS, HTTP, SMTP, peer-to-peer sys-
tems

• Network transport architectures, TCP, UDP, TCP congestion control

• Routing and forwarding, intra-domain and inter-domain routing algorithms

• Link layers and local area networks, especially Ethernet and WiFi

• As time permits:

– Multimedia communications and quality of service

– Network measurement, inference, and management

– Network experimentation and performance analysis

– Network security

– Protocol verification

The assignments can also be used in a more advanced graduate networking
course.



3 TERMINOLOGY 3

3 Terminology

The following definitions give the normal meaning of terms used in this documen-
tation. In places where specific usage differs from this section, the differences will
be explained.

Slice A GENI slice created via a Slice Authority.

Sliver A GENI sliver create via a Component Manager or Slice Authority.

Interface A network port (actual or emulated) on a GENI node which has been
assigned an IP address at sliver creation.

Manifest An XML document provided by the Component Manager or Aggre-
gate Manager at the time of sliver creation, which describes the resources
allocated to a sliver.

Node, GENI Node A physical or virtual machine allocated to a GENI Sliver.

4 Objectives

The assignments developed in this project aim to teach the basics of network pro-
gramming, client/server architectures, how a reliable transport protocol runs on
top of an unreliable delivery mechanism, how routing protocols operate, and how
to differentiate among flows.

A key goal of using GENI (as opposed to other platforms such as Planet-
Lab or DETER) is exploring the greater variety available in the GENI infrastruc-
ture, and leveraging new GENI projects. Students will use a number of tools
from the experimenter portal (http://groups.geni.net/geni/wiki/
ExperimenterPortal), including tools that simplify resource allocation like
Gush, Omni, Raven, and Flack. These simplify the allocation of GENI nodes and
slices, and the parsing of manifests.

5 Planned Assignments

In this section, we describe a number of potential ideas for lab assignments that
use GENI. The ideas can be classified into three broad categories:

1. Partial implementation of resource allocation mechanisms,



5 PLANNED ASSIGNMENTS 4

2. Partial implementation of reliability/congestion control mechanisms, and

3. Partial implementation of packet forwarding, filtering, and quality of service
mechanisms.

These correspond to application-layer/middleware, transport-layer, and network-
layer functions in the current TCP/IP protocol stack.

5.1 Measuring Application Performance and Resource Alloca-
tion Mechanism Implementation

5.1.1 Goals

This project introduces students to GENI, virtual machines, and alternative re-
source allocation mechanisms that increase application performance.

5.1.2 Tools Used

This assignment can leverage the Virtual Desktop Cloud project from the Ohio
State University.

5.1.3 Description

The Virtual Desktop Cloud is a system with a variety of virtual machines and
virtual machine containers (called VMNet). The system runs desktop machines
in this cloud service, and explores ways to increase performance and minimize
overhead. The system includes a desktop client benchmark suite that is capable
of automating normal desktop activities by mimicking user behavior, and then
timing the response of applications and reporting on the overall performance. On-
TimeMeasure can be used to monitor the network utilization and performance.

The students will use this infrastructure to compare strategies for allocating
CPU, memory, and bandwidth to virtual machines. They will study the ways in
which virtual machine resource allocation affects user-perceived performance.

Designing and implementing a resource allocator will teach the students im-
portant concepts. The Virtual Desktop Cloud project provides all the tools to ex-
periment with the effect of network performance on the usability of virtual desk-
tops. The students can allocate cloud machines, allocate thin clients, then place
a virtual network between the two, and have VDBench report on the usability
characteristics of the thin client.



5 PLANNED ASSIGNMENTS 5

The system is currently independent of the remote desktop protocol. A project
that couples specific network characteristics (long delay, fading, etc.) with specific
protocol mitigations (aggressive pipelining, forward error correction (FEC), etc.),
and evaluates the thin client performance can be a nice extension, possibly for a
more advanced course or for extra credit.

5.2 Measuring Infrastructure Performance and Congestion Con-
trol/Reliability Implementation

5.2.1 Goals

This project aims at introducing students to the concepts of reliability and conges-
tion control, and increasing their understanding of the performance of different
types of GENI infrastructure. The students can implement parts of the functions
that are typically included at the transport layer in today’s TCP/IP stack. The
students will compare how the goodput depends on GENI infrastructure perfor-
mance.

5.2.2 Tools Used

This project can leverage some experimenter command line tools such as Gush
(GENI User Shell), and can explore diverse GENI infrastructure such as the wire-
less testbed ORBIT and ProtoGENI nodes and links.

5.2.3 Description

The project will require students to allocate a small number of GENI nodes and
links, and experiment with the impact of link delay and loss characteristics, and
link bandwidth, on the performance (e.g., goodput) of reliability and congestion
control. The students can implement part of a transport protocol (specifically
partial congestion control and reliability functionality) and study the impact of
parameters such as window sizes, selective acknowledgments, lossy (wireless)
links and variable traffic load.

The students can also create a small topology with hosts on both sides of
a bottleneck link, and use a web or other traffic generator to saturate the link
in one direction. They can then vary the link bandwidth and delay (and choose
different link loss characteristics), and test their reliability and congestion control
algorithm. They can also experiment with the size of the drop-tail queue on the



5 PLANNED ASSIGNMENTS 6

bottleneck link (and the use of Random Early Detection), and observe the effects
on goodput.

A possible extra credit extension can have the students implement a packet-
pair or packet-train available bandwidth estimator tool using UDP packets. They
can use either a tool from the literature (based on its published description) or
propose their own. The students can evaluate their implementation’s accuracy on
network topologies of varying bandwidth, delay, and loss. They can also evaluate
the impact of both constant bit rate and TCP cross traffic (e.g., from a web traffic
generator), including the case of saturated links (that is, no available bandwidth).



5 PLANNED ASSIGNMENTS 7

5.3 Using OpenFlow for Quality of Service/Filtering Mecha-
nism Implementation

5.3.1 Goals

This project can introduce students to OpenFlow, and have them implement and
evaluate different packet filtering and quality of service (QoS) operations. For
example, they can design and implement network-layer QoS mechanisms such
as Weighted Fair Queuing (WFQ) scheduling or Random Early Detection (RED)
with multiple queues or thresholds. Label or tag switching can also be used to
mark, forward, and switch flows.

5.3.2 Tools Used

This project can leverage one of the GENI resource allocation tools to simplify
requesting resources. The project will also leverage OpenFlow-capable switches
and networks such as the GPO Lab OpenFlow network.

5.3.3 Description

In this project, the students can explore forwarding functionality that OpenFlow-
capable switches allow and quantify their performance on multiple aggregates.

For example, the students can develop an OpenFlow controller that imple-
ments a stateful firewall capable of processing established connections without
contacting the controller.

Given a network such as:

Server --- --- Remote Server
\ /

HostA --- +--- Firewall +-- Internet
/

HostB ---

The students can develop functionality to implement policies such as:

• Internet hosts may connect to TCP port 80 on “Server,” but no other port.

• “Server” may connect to “Remote Server” on port 8080, but no other hosts
on the right side of the firewall.



5 PLANNED ASSIGNMENTS 8

• “Remote Server” may connect to TCP ports 80 or 8080 on “Server”, but no
other ports.

• “HostA” and “HostB” may connect to any host on the right side of the fire-
wall on any port, but no host on the right side of the firewall may connect to
“HostA” or “HostB.”

Once a connection has been established, TCP segments related to the connec-
tion should pass through the OpenFlow switch without involving the controller.
The controller should examine only packets from the three-way handshake, clos-
ing handshake, or reset (RST) packets.

The project can be extended to ask students to implement different tag/label
switching mechanisms, and differentiated Quality of Service (QoS) functional-
ity. This would be especially appropriate for more advanced graduate network-
ing courses. For scheduling, weighted fair queuing, or a simple variant like
Deficit Round Robin (DRR) can be implemented and evaluated. For buffer al-
location/drop mechanisms, multiple queues implementing RED can be used with
different thresholds, similar to RED with IN/OUT (RIO) for differentiated ser-
vices.


