
Programming Assignments for
Graduate Students using GENI

Named Data Networking

Copyright c© 2012 Purdue University,
Colorado State University

Please direct comments regarding this document to fahmy@cs.purdue.edu.

1 Introduction
This project leverages resources on the ProtoGENI aggregate, using the Omni [6]
and Flack [4] GENI clients. The ProtoGENI tutorial [9] is a good starting point
to become familiar with the ProtoGENI aggregate. General documentation on the
GENI project and its available resources is found on the GENI wiki [7].

GENI resources are shared resources provided by members of the networking
community. Please release your slivers when you are done with them, or if you
are going to have to leave them for an extended period of time. Remember that
in many cases you may be able to perform an experiment, copy the data off to
another host, and release the sliver.

1.1 Objectives
The objective of this assignment is to familiarize you with named data (sometimes
called content-centric) networking. You will specifically learn about:

• The Project CCNx [5] named data networking overlay for IP networks

• Architectural features of CCNx and other content-centric networking, such
as publish-subscribe content distribution, caching at intermediate nodes,
and intelligent request forwarding

• Using named data networking (NDN) to fetch content from multiple sources

• The effects of cache granularity on bandwidth requirements for content dis-
tribution in a named data network

• The usage of intelligent forwarding to reduce bandwidth requirements in a
collaborative environment

1.2 Assignment Material
The material for this assignment can be found at:
http://www.cs.purdue.edu/homes/fahmy/geni/geni-ndn.tar.
gz

1

http://www.cs.purdue.edu/homes/fahmy/geni/geni-ndn.tar.gz
http://www.cs.purdue.edu/homes/fahmy/geni/geni-ndn.tar.gz

1.3 Tools
ccnd The ccnd daemon and its associated software is the reference implemen-
tation for the content-centric networking protocol proposed by Project CCNx [5].
This assignment uses release 0.6.1 of the ccnx software package. More in-
formation on this package can be found at the Project CCNx web site, http:
//www.ccnx.org/. The CCN protocol embodied in CCNx is an attempt at a
clean-slate architectural redesign of the Internet.

Atmos The Atmos software package from the NetSec group at Colorado State
University [8] will provide named data for your network in the form of precipita-
tion measurements. The Atmos tools are installed in /opt/ccnx-atmos.

NetCDF Tools NetCDF (Network Common Data Form) is “a set of software
libraries and self-describing, machine-independent data formats that support the
creation, access, and sharing of array-oriented scientific data.” The NetCDF tools
package provides several tools for manipulating NetCDF data, including ncks, a
tool for manipulating and creating NetCDF data files; ncdump, a similar tool used
for extracting data from NetCDF data files; and ncrcat, a tool for concatenating
records from multiple NetCDF data files.

Flack Flack [4] is a graphical interface for viewing and manipulating GENI re-
sources. It is available on the web at http://www.protogeni.net/trac/
protogeni/wiki/Flack. You may use either Omni [6] or Flack to create and
manipulate your slices and slivers, but there are certain operations for which you
will probably find one or the other easier to use. You will have to use the Flack
client to Instrumentize your slices, as you will be directed some exercises.

2 Setting up ccnd
The ccnd package will be installed on each node allocated by the RSpecs pro-
vided with this assignment, and the ccnd daemon itself will be started at boot
time. The CCNx binaries will be added to the default system shell paths by
default, but if you use an alternative shell you may wish to add the directory
/opt/ccnx-0.6.1/bin to your PATH environment variable to save some
typing. On any machine from which you need to manipulate the ccnd network,

2

http://www.ccnx.org/
http://www.ccnx.org/
http://www.protogeni.net/trac/protogeni/wiki/Flack
http://www.protogeni.net/trac/protogeni/wiki/Flack

you must create keys for your user. In order to do this, log into the host nor-
mally via ssh and execute the ccninitkeystore command from the CCNx
software package.

3 Exercises

3.1 Routing in a Named Data Network
In this exercise, you will build a named data network using the Project CCNx [5]
networking daemon ccnd and transfer scientific data in the NetCDF [3] format
between data providers and data consumers using routing based on content names.
For the purpose of this exercise, the network will use static routes installed at slice
setup. Content will be served and consumed by the Atmos software package.

Create a GENI experiment using the precip.rspec file in the provided
materials. It will allocate a network such as that depicted in Fig. 1, with ccnd
running on every host and an Atmos server running on the hosts datastore1
and datastore2.

Routing in named data networks takes place using the namespace under which
data is stored. In the case of CCNx, the data namespace is a URI [2, 1], so it looks
similar to the familiar http:// and ftp:// URLs of the World Wide Web.
CCNx URIs are of the form ccnx:<path>, where <path> is a typical URI
slash-delimited path. The components of the URI path are used by the network
to route requests for data from consumers to the providers of that data. Routes
have been installed on all of the machines in the network except researcher2,
a data consumer node with two connections to the rest of the named data network.

TASK 1.1: Finalize Configuration

In this task, you will observe the effects of the missing static routes, and restore
them.

Log into the host researcher1. Run the command ccninitkeystore.
Issue the command ccndstatus to print the status of the ccnd daemon on the
local host. Note the number of content items stored on this host (which should be
zero, if you have not yet fetched any content) and the number of interests accepted
(under “Interest totals”).

On researcher1, issue a request for precipitation data from 1902/01/01
through 1902/01/02. To do this, use the Atmos tools by invoking:

3

http://
ftp://
ccnx:<path>
<path>

Figure 1: CCNx network for sharing precipitation data. Hostnames will change
with each instantiation.

4

/opt/ccnx-atmos/client.py
Answer the date questions appropriately, and observe that a .nc NetCDF file

is created in the current directory containing precipitation data for the specified
dates.

Run ccndstatus again, and look at the statistics on the local ccnd. You
should see both that a substantial number of content items are cached on this
machine (this is the meaning of the “stored” field under “Content items”) and that
many more Interests have been seen.

Next, log into researcher2 and issue the same command. Observe that it
takes much longer at each step, does not terminate, and no .nc file is created.
This is because the ccnd on researcher1 had routes to the precipitation data
requested by Atmos, but researcher2 does not. Issue the following command
to install the appropriate routes:

ccndc add ccnx:/ndn tcp router

Note that the ccndc command takes a content path (ccnx:/ndn) and binds
it to a network path (in this case, the host router, which is a valid hostname on
the experiment topology, resolving to an IP address on the router machine). It
can also be used to delete routes with the del subcommand.

Question 1.1 A: From researcher2, fetch the same data again (from 1902/01/01
to 1902/01/02), and record the fetch times reported by client.py. It prints out
the time take to pull each temporary file along with the concatenation and write
time. Then fetch 1902/02/03 to 1902/02/04, and record those fetch times. Fetch
1902/02/03 to 1902/02/04 a second time, and record the new times. Which trans-
fer was longest, and which was shortest? Knowing that each ccnd caches data
for a short period of time, can you explain this behavior?

Question 1.1 B: Browse the content caches and interests seen on various hosts
in the network by loading their ccnd status page on TCP port 9695 in your
browser (see Section 5, Hints, below). Which hosts have seen interests and have
content cached, and why?

TASK 1.2: Intent Propagation

This task will demonstrate the behavior of Intent filtering during propagation.

5

Log into the machine datasource1 and run the command tail -f
/tmp/atmos-server.log. Next, run /opt/ccnx-atmos/client.py
on both of the hosts researcher1 and researcher2. Enter 1902/01/15 as
both start and end date on both hosts, and press <ENTER> on both hosts as close
to the same time as possible.

Question 1.2 A: What intents show up at datasource1 for this request? (Use
the timestamps in the server log to correlate requests with specific intents.) Will
you observe unique or duplicate intents when both researcher1 and researcher2
fetch the same data at precisely the same time? Why?

TASK 1.3: Explore traffic patterns

For this task, you will start network monitoring services on your slice and
observe the data traffic passing between hosts as you fetch various content.

Load your sliver in Flack [4] if you have not already done so by refreshing
your slices (if necessary) and clicking the slice name in the left pane. Go to
the Plugins tab (depicted as a puzzle piece) and click the Instrumentize button.
This will take some time, as it adds and configures measurement and monitoring
software to your sliver. When it completes, open the INSTOOLS portal in your
web browser (Flack will prompt you) and look at the bandwidth usage between
the various hosts over time in the INSTOOLS plots.

Log into the host collaborator1 and use the Atmos client to fetch data
from 1902/01/28 to 1902/02/03. Look at the INSTOOLS data usage, and ob-
serve that data is pulled from both datasource1 and datasource2, through
router to researcher1 and ultimately to collaborator1. Record or re-
member the data rates and volumes from this transaction.

Question 1.3 A: Log into collaborator2 and fetch the same dates. Which
hosts transfer data? Why?

Question 1.3 B: Now fetch 1902/01/25 to 1902/01/31 from researcher2.
How does this transfer differ from the previous two? Why?

6

3.2 Choosing Content Names
This exercise will demonstrate the importance of naming in named data network-
ing. As the term suggests, and as you saw in Task 1.1, routing in named data
networking is performed based on content names. This means that content nam-
ing has a large impact on how consumers fetch the data they require, and naming
structure can heavily influence how simple and efficient data requests may be.

The Atmos package uses content names in the namespace /ndn/colostate.
edu/netsec to serve NetCDF data. The data is sliced by time, with the suffix
pr_<year>/<month>/<day>/00 added to represent data for the specified
date. Thus, clients can request precipitation data for a given day in history, or a
range of days, by issuing an interest for the dates in question. The complete path
for data relating to January 3, 1902 would be:

/ndn/colostate.edu/netsec/pr_1902/01/03/00

TASK 2.1: Granularity of naming

This task will require you to change granularity of content names used by the
Atmos client and server for different use cases, and measure the resulting traffic
changes.

Create an experimental network using the naming.rspec RSpec included
in the assignment materials. This RSpec creates a network of the same topology
as the network used in Exercise 3.1, but does not start or install the Atmos server
or client. You will be modifying and installing this software yourself.

Fetch the Atmos source from http://www.cs.purdue.edu/homes/
fahmy/geni/ccnx-atmos.tar.gz. You may fetch it directly to the testbed
nodes you will be using, or to a local machine, as you prefer. You will have to
copy the source code to the GENI nodes to build and run it in your experiment.

Build the Atmos source on hosts datasource1 and datasource2, as
well as a collaborator or researcher node of your choice by entering the source
directory and running make. On datasource1 and datasource2, you will
find a NetCDF data file in /tmp, named pr 19020101 060000.nc and
pr 19020201 060000.nc, respectively. On each of these hosts run the com-
mand ccninitkeystore and start the Atmos server with the following com-
mands:

cd /tmp
$HOME/ccnx-atmos/server $DATAFILE

7

/ndn/colostate.edu/netsec
/ndn/colostate.edu/netsec
http://www.cs.purdue.edu/homes/fahmy/geni/ccnx-atmos.tar.gz
http://www.cs.purdue.edu/homes/fahmy/geni/ccnx-atmos.tar.gz

Substitute $HOME/ccnx-atmos for your actual Atmos build directory, and
$DATAFILE for the appropriate filename as described above.

On the client host you chose, run ./client.py from the data directory and
select a few dates from January and February of 1902 for date ranges. Make note
of what interests are received at the server, and how long the transfers take.

Change the client and server programs to use this URI, restricting CCNx trans-
fers to a granularity of one month, but preserving the ability of users to retrieve at
one day granularity:
/ndn/colostate.edu/netsec/pr_<year>/<month>

Implementation Hints: It is important understand how script.py uses NetCDF
commands to extract relevant dimensions in the data files. The client (client.py)
breaks up a user’s request into a collection of URIs (one for each day) and fetches
them sequentially. For each URI, script.py generates a list of timestamps (a float-
ing point number indicating the number of days elapsed since January 1, 1901).
From the NetCDF data files, script.py extracts the fields that lie within these times-
tamps. The server side changes are minimal. Once a month’s granularity of data is
received at the client side, it should be filtered to match the specific days requested
by the user.

Retrieve a variety of dates in the January to February 1902 date range, and note
again what interests are received at the server and how long the transfers take.

Question 2.1 A: What general difference do you see in network behavior be-
tween these solutions?

Question 2.1 B: Which URI scheme is more efficient in time and network re-
sources if the user only wants a few days of data? What if the user wants a full
calendar month of data?

3.3 Exploring the Impact of Caching
For this exercise you will manipulate various caching parameters for the ccnd
daemon and observe the effects on network efficiency.

A property of named data networking is that multiple requests for the same
names may return the same data. This allows intermediate nodes to cache data
from one request for a given name and return it for future requests of the same

8

name, from the same client or even a different client. When multiple clients lo-
cated near each other but far from the server in the network want the same data,
a node near the clients may be able to service some clients without contacting the
server.

Caching behavior can be controlled by the client, the server, or the individual
ccnd nodes between the two. Servers can optionally specify the recommended
cache lifetime of data they generate, clients can optionally request that their data
is fetched from the server itself (bypassing caching), and ccnd nodes can define
their default and maximum cache lifetimes. Caches may also be affected by the
available cache space and volume of interests or data items passing through the
cache.

TASK 3.1: Opportunistic caching

This task will demonstrate the benefit of opportunistic caching for static data
used repeatedly.

Create a GENI slice using cache.rspec from the handout materials. This
slice has only two hosts, a data source and a data consumer. The data source serves
historical precipitation data using the Atmos server, which is static information. It
has a long cache timeout for this reason — five minutes. The data consumer uses
a shorter cache timeout of 60 seconds, and the link between the two emulates a
moderate consumer broadband link.

Question 3.1 A: From the host consumer run /opt/ccnx-atmos/client.py
to fetch data from 1902/01/21 through 1902/01/24, and time the total transaction.
Within 60 seconds, fetch the same data again, and time it. After 60 seconds (but
before 300 seconds have passed), fetch it a third time, and time that. What is
the benefit of local caching (the second fetch)? Is there perceptible benefit from
server-side caching (the third fetch) when data takes some time to generate?

4 Other Projects
The following are ideas for deeper projects into named data/content-centric net-
working or the implementation embodied in CCNx.

• Design and implement a cache coherence or cache management protocol for
content subscribers or content providers to communicate with intermediate

9

nodes to improve caching strategies in the presence of data with dissimilar
caching requirements.

• Develop an application-specific caching mechanism for some data type (per-
haps NetCDF) and deploy it in CCNx.

• Design and implement a protocol for ccnd to communicate directly with
other ccnd instances via raw Ethernet frames without IP, ARP, or the rest
of the TCP/IP stack.

5 Hints
These hints and answers to common questions may help you debug problems you
encounter while performing the exercises in this assignment.

• Remember that you must run ccninitkeystore before invoking any
commands that use ccnd. If CCNx commands don’t seem to be “doing
anything”, make sure you have the file .ccnx/.ccnx keystore in your
home directory. If it is not present, you have forgotten to initialize the key-
store!

• If you are told that CCNx-related commands such as ccndc are not found,
make sure that /opt/ccnx-0.6.1/bin is in your shell’s path.

• The status of ccnd can be queried either by logging into a host and running
ccndstatus, or by loading the web page served by ccnd on port 9695.
For example, if your researcher2 node is on pc308.emulab.net
and you want to query its forwarding table, you can point your web browser
at http://pc308.emulab.net:9695/.

• If the INSTOOLS portal shows a blank page, and you are running the
Chrome browser, click the shield icon at the right of the URL bar and select
“Load Anyway”.

References
[1] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform resource identifier

(URI): Generic syntax. RFC 3986. Available at http://www.ietf.org/
rfc/rfc3986.txt, Jan. 2005.

10

http://pc308.emulab.net:9695/
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

[2] CCNx URI Scheme. http://www.ccnx.org/releases/latest/
doc/technical/URI.html.

[3] NetCDF. http://www.unidata.ucar.edu/software/netcdf/.

[4] M. Strum. Flack manual. http://www.protogeni.net/trac/
protogeni/wiki/FlackManual.

[5] The CCNx Project. http://www.ccnx.org/.

[6] The Geni Project Office Wiki. Omni. http://trac.gpolab.bbn.
com/gcf/wiki/Omni.

[7] The GENI wiki. http://groups.geni.net/geni.

[8] The Network Security Group at Colorado State University. http://www.
netsec.colostate.edu/.

[9] The ProtoGENI Project Wiki. ProtoGENI tutorial. http://www.
protogeni.net/trac/protogeni/wiki/Tutorial.

11

http://www.ccnx.org/releases/latest/doc/technical/URI.html
http://www.ccnx.org/releases/latest/doc/technical/URI.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.protogeni.net/trac/protogeni/wiki/FlackManual
http://www.protogeni.net/trac/protogeni/wiki/FlackManual
http://www.ccnx.org/
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://groups.geni.net/geni
http://www.netsec.colostate.edu/
http://www.netsec.colostate.edu/
http://www.protogeni.net/trac/protogeni/wiki/Tutorial
http://www.protogeni.net/trac/protogeni/wiki/Tutorial

	Introduction
	Objectives
	Assignment Material
	Tools

	Setting up ccnd
	Exercises
	Routing in a Named Data Network
	Choosing Content Names
	Exploring the Impact of Caching

	Other Projects
	Hints

