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Abstract

Application-level protocols used for object delivery,
such as HTTP and FTP, are built almost universally
atop TCP/IP and thus inherit its host-to-host abstrac-
tion. Given that object delivery services are replicated
for scalability, this host-to-host abstraction unnecessar-
ily exposes failures of individual service replicas to their
clients. While changes to both client and server appli-
cations could be used to mask such failures, this paper
explores the feasibility of transparent recovery for un-
modified object delivery services (TRODS).

The key insight in TRODS is cross-layer visibility and
control: TRODS carefully derives reliable storage for
application-level state from the mechanics of the trans-
port layer. This state is used to reconstruct object de-
livery sessions, which are then transparently spliced into
the client’s ongoing connection. TRODS is fully back-
wards compatible, requiring no changes to the clients,
the network, or the object delivery service. We imple-
ment TRODS as a server-side kernel module and experi-
mentally demonstrate that its performance is competitive
with unmodified HTTP services.

1 Introduction

A client’s interaction with a service should only fail
when the service fails. Yet most Internet services tie the
fate of a client’s connection to a single server, because
they are built on top of TCP and inherit its host-to-
host bindings. If this single server fails, the client’s
connection will break and it appears to the client that the
entire service has failed. However, if a new server could
failover the connection—that is, interact with the client
exactly as the original server would have—the client’s
connection could continue uninterrupted and unaware of
the failure.

We aim to enable failover for a large class of Inter-
net services, called object delivery services, that give
clients read-only access to a set of content objects, such

as webpages, images, or videos. These services are typ-
ically replicated for scalability, e.g., there are dozens or
hundreds of servers that all deliver the same set of im-
ages. This replication makes these services amenable to
failover: If one server fails while delivering an object,
another server with access to the object should be able to
continue delivering it. Our system, Transparent Recov-
ery for Object Delivery Services (TRODS), is an efficient
way to enable exactly that.

TRODS has been designed with the goal of immediate
deployability, which brings with it several restrictions.
First, clients of the service cannot be modified: they
are often not under the service’s control and often run
different applications, browsers, and operating systems.
Second, the server’s application code cannot be modi-
fied: source code may be unavailable, and application
changes would require integration effort for every ser-
vice that seeks failover. Instead, TRODS is implemented
as a server-side kernel module, requiring no changes to
the client or application service.

At a high level, TRODS operates by ensuring that
the minimal application-level information needed to con-
tinue a connection is available to a recovery server at
failover time. This information can be preserved in two
ways. First, it can be retransmitted by the client to its new
server. While TRODS cannot modify the client, it uses
its position in the server’s kernel to manipulate a connec-
tion’s TCP packets to coerce the client into retransmitting
information to the new server. Second, the information
can be saved to a persistent store that can survive the fail-
ure of the original server.

We describe two complementary versions of TRODS
that use different resources as persistent stores. The first
version, TRODS-KYV, uses a key-value store local to the
server for persistence. It improves on previous failover
schemes by requiring only a single on-path remote op-
eration by the original server—a save to the key-value
store—to guarantee any subsequent connection failover.
The second version, TRODS-TS, takes this a step far-



ther and eliminates the need for any remote operations.
TRODS-TS carefully repurposes the TCP timestamp op-
tion that accompanies every packet in a connection as the
persistent store.

These two TRODS approaches provide complemen-
tary functionality: TRODS-KV is more general purpose,
provides greater scalability, handles more abnormal ob-
ject delivery scenarios, and avoids some additional se-
curity concerns. On the other hand, TRODS-TS has
very low overhead and requires no additional physical re-
sources for deployment. Together, TRODS-TS can serve
the highly-popular objects of a service, while TRODS-
KS can handle the unpopular or exceptional cases.

Finally, TRODS makes the service operator’s job
easier. TRODS allows a service to use stateless load-
balancers, which are easier to replicate and scale out
than their stateful counterparts.

1.1 Why Not an End-to-End Solution?

End-to-end solutions to failover offer an architecturally
pure approach. These include new transport layer
protocols that can be designed to specifically allow
failover [20, 21, 23, 24], as well as application-level
solutions that modify the client so it reconnects to a new
server if its current server fails. These end-to-end solu-
tions almost by definition require client-side changes,
however.

Yet, one particular application-level end-to-end solu-
tion for HTTP deserves a closer look: JavaScript is ubiq-
uitous in web browsers and can download new client-side
instructions on demand. For example, when a client re-
quests a webpage, the returned object’s JavaScript can
set timeouts for downloading embedded objects which,
if triggered, retry the downloads without the user’s inter-
vention.

This approach is promising, but it suffers from three
problems that illuminate a few of TRODS’ benefits.
First, bootstrapping this approach can be problematic,
as the initial page, with its JavaScript control loop,
does not have the potential for failover. TRODS, by
contrast, can failover any connection and does not have
a bootstrapping problem. Second, failure detection
needs to occur across the wide-area network, leading
either to overly conservative timeouts (and significant
user-perceived delays) or to aggressive retry attempts
(and unnecessary service load). TRODS performs failure
detection inside the datacenter and completes failover in
less than a second. Third, the JavaScript approach may
add failover from the wrong administrative domain, as
webpages often use object delivery from third parties,
such as advertisers or content delivery networks (CDNs).
And bootstrapping again does not necessarily help, e.g.,
embedded images cannot execute JavaScript themselves.
TRODS allows separate administrative domains to
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Figure 1: A typical service architecture that uses TRODS.

control their own failover mechanisms, and does so in
a more application-independent manner. That said, this
JavaScript approach can recover from failures at the
network routing or entire datacenter-level while TRODS
is only designed to handle failures between machines in
the same datacenter.

The remainder of the paper is organized as follows.
Section §2 describes a typical service architecture and
provides a high level view of TRODS’ design. §3 gives
a low level description of TRODS’ design for HTTP ser-
vices. §4 describes the two persistent stores for TRODS.
We address some security concerns in §5 and in §6 we
describe and evaluate our implementations of TRODS.
§7 describes how TRODS handle non-static objects, §8
discusses related work, and §9 concludes.

2 Protocol
2.1 Architecture

Figure 1 shows the architecture of a typical Internet
service using TRODS. Every component is standard and,
excluding the key-value store, would likely be found
in a TRODS-free version of the service. The clients
are unmodified, run their normal networking stack and
applications, and connect to the service using TCP over
the Internet. We use an unmodified load balancer to
route all packets in a connection to the same server; a
liveness monitor maintains the load balancer’s pool of
available servers. TRODS does not need a stateful load
balancer, so any stateless flow-based hashing suffices,
e.g., consistent [14] or mod n hashing using the flow’s 5-
tuple for server affinity. The TRODS kernel module sits
in these servers’ network stacks, which allows TRODS to
manipulate and control the connection’s packets flowing
in both directions. Figure 1 also includes a key-value
store, which one of our designs, TRODS-KYV, uses as a
persistent store (discussed further in §4).

This figure illustrates one concrete example of a ser-
vice architecture that uses TRODS. TRODS can work
for any general object deliver service that meets three
requirements: it is comprised of replicated servers that



serve static objects, its servers can all use the same IP
address(es), and it has an updatable load balancer.

In this paper, we do not consider the failure of the load-
balancer or the liveness monitor. Both can be supported
by standard replication and failover techniques, and their
state need be linear only in the number of servers, not the
number of flows. Furthermore, unlike typical deploy-
ments, TRODS can actually tolerate inconsistent state
between load-balancers, e.g., in the set of live servers.
If one sends the subsequent packets of an existing con-
nection to a new server, the connection is dealt with as a
normal case of failover. We do consider the failure of the
key-value store in §4.1.

2.2 The Anatomy of an ODS Connection

To fully understand how TRODS enables failover, we
first identify the two stages of a connection to an object
delivery service. The first phase is connection setup,
where the client and server negotiate what object the
client is going to download. In HTTP, for example,
this constitutes the HTTP GET request and the server’s
response header. The second phase of the connection is
the object download. In HTTP, this corresponds to the
transmission of the response body.

Transparent failover requires a new server to continue
aclient’s interaction with the service over its pre-existing
TCP connection. If the client is in the setup phase, the
new server should continue negotiating with the client
and then start the object delivery. If the client is in
the download phase, the new server should continue the
client’s download exactly where the old server left off.

The two phases of a connection are quite different.
The setup phase is typically short, in terms of both
bytes and packets, and application-layer data flows in
both directions. The download phase can be long, and
application-layer data only flows from the server to the
client. Accordingly, TRODS handles failover for each
phase quite differently.

2.3 Failover

TRODS takes the following steps to failover a client’s
connection on a new server:

1. Detect a server failure.
2. Redirect the client’s connection to a new server.
3. Initiate failover on the new server.

4. Determine the connection’s current phase
If in the setup phase:

5. Continue negotiating with the client.
Otherwise, if in the download phase:

5. Determine what object the client is downloading.

6. Determine the client’s current offset into the object.

7. Resume sending the object from that point.

Failure Detection. To detect server failures, we apply
standard unreliable failure detection [6]. Periodically, a
liveness monitor sends a heartbeat packet to each server
and each server responds with their own packet. If
the liveness monitor does not hear from a server for
longer than a threshold amount of time (25ms in our
implementation), the server is declared failed.

Connection Redirection.  Connections to the failed
server must be rerouted to new servers so that they can
be failed over. Once the liveness monitor detects a server
has failed or a new one has started, it updates the load
balancer’s state about the pool of active servers and their
corresponding MAC addresses. The load balancer will
then start routing packets to the new set of servers.

The choice of load balancing scheme affects how on-
going connections are remapped to servers. If consistent
hashing [14] is used, only connections to the failed server
will be reassigned elsewhere. By contract, if a hashing
function that is less smooth is used—such as selecting a
server by randomly hashing mod the server-pool size—
then almost all ongoing connections will be reassigned
to new servers. While more disruptive, TRODS can still
handle this case, treating such reassignments as normal
cases of failover.

Failover Initiation. After a load-balancer redirects a
connection, the new server will receive any packets the
client sends. The new server will recognize these packets
are in the middle of a TCP connection that does not exist
on this server and thus must be failed over. While there
might often be outstanding packets in the network when
a server fails—especially given a large TCP window
size with an ongoing download—TRODS cannot rely
on these packets either to exist or to arrive at the new
server in order to initiate failover. Instead, TRODS
ensures that a client will send a packet that reaches the
new server by leaving at least one packet from the client
unacknowledged at all times, coercing its TCP stack to
continue to retransmit it. Fortunately, this does not affect
the application-layer connection, as the bidirectionality
of TCP and the BSD socket interface allows a client
to receive the server’s application-layer response, even
when its request has yet to be fully acknowledged at the
transport layer.

Determining the Current Phase. TRODS needs to
share state between a connection’s original and failover
servers in order to accurately determine the current phase
of the connection. TRODS accomplishes this by block-
ing a connection from entering the download phase until
it has saved some information to a persistent store that
will survive the failure of the original server. When a



new server starts to failover a connection, it first looks up
the connection in the persistent store. If the connection is
not found, the new server knows the connection is still in
the setup phase; otherwise, it is in the download phase.
We discuss a few corner cases of phase determination in

§3.

Continuing Negotiations. If the connection is in the
setup phase, the new server must continue the negotiation
with the client. Negotiation is stateful, which would
suggest TRODS needs to save state to the persistent store
to continue the negotiation on a new server. However,
TRODS exploits the short length of the setup phase to
avoid this.

Because setup differs between protocols, TRODS
deals with each uniquely. The common theme is that
TRODS uses control of the TCP layer to effectively
coerce the client into providing storage unbeknownst to
it. In HTTP, for example, TRODS does not acknowledge
the client’s request until after the client has entered the
download phase. Thus, if a server failure occurs during
the setup phase, the client’s TCP stack will timeout
and retransmit the request so a new server can handle
it. Here, TRODS again exploits the separation between
application-layer data and TCP-layer acknowledgments,
which allows a client’s application to operate normally
while its transport layer attempts to retransmit packets.
We discuss further details about HTTP setup in §3.

Determining the Object. To continue a connection
in the download phase, a new server needs to determine
both the object and the client’s offset into that object.
We assume that each service object will have a unique
objectID, a concise identifier of the object such as a
video’s filename. We further assume that all objects
are immutable, although we discuss TRODS’ use with
versioned and dynamic objects in §7. Thus, if a new
server knows the objectID associated with a connection,
it knows exactly what object the client is downloading.
TRODS makes this objectID available to the new server
by saving it to the persistent store.

Determining the Client’s Offset. Once TRODS has
determined what object a client is downloading, it still
needs to determine how far into the download the fail-
ure occurred. TRODS derives this offset by again lever-
aging cross-layer information. TRODS compares the
objectISN—the TCP sequence number for the first byte
of the object download, which had been saved earlier to
the persistent store—and the most recent TCP sequence
number the client has acknowledged. The difference be-
tween these two values gives the client’s current offset
into the object; all preceding bytes have been success-
fully received at the client.

Resuming Object Downloads. Once TRODS knows
the objectID and offset for a connection, it must trans-
fer the object, starting at this offset, from an application
running on the new server. TRODS accomplishes this by
initiating a new local connection to the application, and
it uses the objectID to synthesize an application-level re-
quest for the client’s object. It quickly acknowledges and
discards the downloading object until the client’s current
offset is reached, at which point it begins transmitting the
data from the server application to the client. In many
applications, this initial “discard” phase can be avoided
by requesting the client’s offset directly, e.g., through
Range—Request headers in HTTP.

3 TRODS For HTTP

While TRODS provides a general framework for per-
forming failover, it does require a mechanism for extract-
ing a connection’s objectID and objectISN, which typi-
cally requires application-specific parsing. In HTTP, for
example, this objectID is commonly the request URL,
while the objectISN is the first byte of the HTTP re-
sponse body; in our TRODS prototype, this application-
specific HTTP knowledge constitutes about 100 lines of
code. For concreteness, this section details TRODS’ han-
dling of HTTP connections.

We start by exploring how TRODS handles a normal
connection at a packet-by-packet level. We then show
how this behavior allows TRODS to failover that con-
nection to a new server for all possible connection states.

We make the following assumptions about a typical
HTTP connection:

1. The request fits in a single packet.

2. The response header fits in a single packet.
3. The response body is less than 4 GBs in size.
4

. Neither HTTP persistent nor pipelined connections
are used.

5. HTTP chunked transfer encoding is not used.

The first three assumptions hold true for the majority
of HTTP connections, and TRODS takes advantage of
them to improve performance. The last two assumptions
simplify the basic description of TRODS. We complete
our specification by relaxing each assumption in §3.3.

3.1 Normal Operation

Figure 2 shows a HTTP connection at both the applica-
tion and transport layers, and table 1 briefly summarizes
how TRODS interacts with this connection from its po-
sition underneath the server’s TCP layer.

The connection begins with TCP’s three-way hand-
shake. During the handshake when the server sends a
response SYN packet, TRODS locally stores knowledge
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Figure 2: A typical client-server HTTP connection at both
the application and TCP layers. The dashed acknowledg-
ment for the client’s request is sent by the server’s TCP
stack, but dropped by TRODS. The right-most ‘“failover”
label indicates a stage of the connection; we detail how
TRODS handles failover for each in §3.2.

of this connection by saving the client’s IP address and
port into an in-memory hashtable. This allows TRODS to
distinguish between normal packets to the server, whose
connections will be in the hashtable, and packets that
should initiate failover, whose connections will not be in
the hashtable because they originated at another server.

The connection continues with the client sending an
HTTP request that fits in a single packet. From this
request, TRODS extracts the objectID from the packet,
which normally consists of the URL! Under normal
processing, the server’s transport layer immediately
responds to receiving this data request with an ACK, but
TRODS drops this packet. If it did not drop this ACK
and the server failed after acknowledging the request,
but before persistently storing anything, the client’s
requested objectID would be lost.

The application server then attempts to send the client
aresponse. This response is often too large to fit in a sin-
gle packet, so the TCP stack on the server distributes it
over many TCP segments. The first segment (and packet)
will include the response header and the beginning of the
response body. TRODS determines the objectISN—the
sequence number of the first byte of the response body—
by searching through the HTTP payload for the dou-

I'The objectID may also include some HTTP request headers, such
as cookies. If only the URI is used when other headers affect the
server’s response, the interaction can appear to be non-deterministic,
which we discuss in §7.

[ Cli [ Srv | TRODS Operation
Syn
Syn Locally store knowledge of this connection
Ack
Req Extract and locally save objID
Ack Drop
Extract objISN
Resp; | Block until objID/objISN are durably stored
Do not ack client’s request
Ack
Respy | Do not ack client’s request
Ack
Fin Locally store sequence number of FIN
Fin/ Delete objID/objISN from persistent storage
Ack Delete connection from local storage
Ack Ack client’s request and Fin

Table 1: Normal operation of TRODS during a typical
HTTP connection.

ble CRLF that delineates the end of the HTTP response
header. TRODS saves the objectISN and objectID to the
persistent store, before releasing the TCP stack to trans-
mit the packets back to the client. TRODS also modifies
all packets that carry the response to not acknowledge the
client’s request. This ensures that if the server fails, the
client’s TCP stack will eventually retransmit a failover-
initiating packet.

After the server’s TCP stack has transmitted the en-
tire response to the client, it sends a FIN packet to start
tearing down the connection. TRODS stores the TCP se-
quence number for the FIN in its local hashtable, to help
it later determine if the client has received the entire re-
sponse. The client will respond to the server’s FIN with a
FIN/ACK of its own; TRODS checks that this acknowl-
edges the server’s FIN, and then knowing the client has
received the entire response, deletes the connection from
the persistent store and local hashtable. The connection
terminates when the server sends the client an ACK that
cumulatively acknowledges the client’s request and FIN.

Deleting connection information from the persistent
store is performed to reduce saved state, not to maintain
correctness. Thus, it can be down in the background or
during periods of low-server load; it does not block or
delay an ongoing connection.

3.2 Failure Recovery

Figure 2 groups the different stages of a connection into
failover cases. We now enumerate these stages, showing
how TRODS provides failover in each case.

Before Setup @. A server can fail after receiving
a client’s SYN packet but before sending a response
SYN/ACK. If this happens, the client’s TCP stack will
eventually timeout and retransmit the client’s SYN. This
SYN will be delivered to a new server and the connec-
tion will proceed normally. If a server fails after issuing



a SYN/ACK but the network drops this packet, the sys-
tem’s behavior is identical. In later cases, we do not dis-
cuss network drops that are equivalent to scenarios with-
out them.

During Setup @. A server can fail after the client re-
ceives the SYN/ACK but before the server sends the re-
sponse. Because the client’s request remains unacknowl-
edged, the client’s TCP stack will eventually timeout and
retransmit the request. The load balancer will direct this
request to a new server, which will initiate failover.

On the new server, TRODS will lookup the client in
the persistent store. If the lookup succeeds, the connec-
tion is currently in the download phase and is recovered
as described in @. If the lookup fails, the client is still in
the setup phase and has not received any part of the re-
sponse yet. TRODS will then open a TCP connection to
the new application server on the localhost and proceed
with TCP’s three-way handshake. Once the connection
is established, TRODS will splice together this new con-
nection and the client’s connection. (TCP splicing joins
two separate connections together so that they act as one;
it is accomplished by translating the IP addresses, port
numbers, and sequence numbers in every packet.) The
client’s request will then be forwarded to the server and
the connection will proceed normally.

During Download ®. If a server fails during the down-
load phase of a connection, the client’s TCP stack will
eventually timeout and retransmit the packet TRODS
purposefully did not acknowledge. This packet, or one
that was in the network when the server failed, can be
combined with the information in the persistent store to
find the objectID and objectISN for this connection.

The new TRODS instance that receives this packet
will start a connection with the local application in-
stance, sending a request for the object constructed
from the objectID. If supported, this request includes
a Range-Request header, indicating that the appli-
cation server should start transmitting the object at the
client’s current offset. The server will respond with
a new response header and the object starting at the
specified offset. TRODS drops the response header,
and it splices together this connection with the client’s
original one.

After Download @. If the server fails after the client
finishes downloading the object, but before TRODS
deletes history of the connection from the persistent
store, TRODS might attempt failover as in ®. However,
the new server’s HTTP response will be an error (status
code 416), as the range request specified an offset that
is one byte past the end of the object. TRODS will
recognize that the client has completed the download,
close its connection to the server, delete the client’s

connection from the persistent store, and, if the client
packet was a FIN, respond to the client with an ACK.

Some packets from a client may be delayed by the
network and not arrive until after the connection has
completed and TRODS has removed it from its local
hashtable. If this occurs, TRODS will attempt to failover
the connection. However, as the client has already com-
pleted its download and closed the connection, it will re-
spond to any new packets from the server with a RST
packet. TRODS forwards this RST to the server, closing
the newly-established connection. While this does not
affect the correctness of TRODS, it does waste server
resources. We describe how to restrict these wasted
failover attempts in §5.1, so that they only occur when
it is plausible that their original server has failed.

3.3 Extensions

For brevity, we omit the detailed explanations of how
TRODS handles HTTP connections that violate our as-
sumptions described earlier in this section. Instead, we
briefly sketch the main ideas for dealing with any viola-
tions. If the request is spread across multiple packets—a
rare event for GET requests—TRODS persistently stores
each packet before allowing its corresponding acknowl-
edgment to flow back to the client. TRODS handles
multi-packet response headers similarly, by saving them
in their entirety to the persistent store before allowing
them to flow to the client. If an object is over 4GB,
TRODS uses multiple objectIDs for it. TRODS han-
dles persistent and pipelined connections by splitting
apart any packets that include data for multiple objects.
Chunked-encoding may only be used if it is deterministic
across replicas, as its in-line metadata of chunk lengths
prohibit TRODS’ simple determination of the client’s
application-level offset into the response object.

4 Persistent Storage

The TRODS protocol refers opaquely to a “persistent
store” that assists with saving connection state necessary
for failover. In this section, we describe two distinct
persistent stores that we use in our prototype.

4.1 Key-Value Store

The first persistent store is a key-value storage system
(e.g., memcached [10]). The storage key that TRODS
uses for each connection is comprised of the client’s IP
address and port number. The key-value store can be
used for arbitrarily-sized objects, which is not true for
the other persistent store. Thus, if the stored information
is large—for instance, when multiple response packets
need to be stored before being forwarded to the client—
TRODS always uses the key-value store.



The configuration and deployment of the key-value
store trades off efficiency and availability. Key-value
storage servers can be colocated in the same rack, clus-
ter, or datacenter as application servers. As the key-value
store moves closer to its application servers, latency de-
creases but the probability of correlated failure increases.
Data in the key-value store can also be replicated for
additional fault-tolerance. That said, even unreplicated
key-value storage provides resilience to a single failure:
a connection fails only when both its application and key-
value server fail simultaneously. For this reason, many
deployments may choose a in-memory key-value store
(e.g., memcached [10]) for very low latency and high
throughput.

4.2 TCP Timestamps

The second persistent store is the TCP timestamp op-
tion [13] that accompanies every packet in a connection.
Failover in TRODS is always initiated by a packet from
the client, which is what makes this store persistent. The
TCP timestamp option is negotiated during connection
setup: Each host must attach the TCP timestamp option
to its SYN packet. Once negotiated, each host will at-
tach its own 4-byte timestamp value and a 4-byte times-
tamp echo reply to every packet. The timestamp echo
reply effectively repeats the last timestamp value that a
host received. The use of the TCP timestamp option is
widespread: It is used by default in modern versions of
Linux, FreeBSD, Mac OS X, and Windows. In the rare
event that a host does not use the TCP timestamp option,
TRODS can fall back to its key-value store for persistent
storage.

TCP timestamps were intended for two purposes.
First, they help improve the accuracy of RTT estimation.
A host will subtract the timestamp echo reply in an ACK
packet from the current time to obtain a new RTT. This
allows the host to accurately sample the RTT at a high
rate and is “vitally important” for large TCP window
sizes [13]. Thus, when co-opting the TCP timestamp
option as persistent storage, TRODS must ensure that it
does not interfere with accurate RTT measurement.

Second, the TCP timestamp option helps protect
against wrapping sequence numbers (PAWS). PAWS
is used to prevent old duplicate segments from a pre-
vious connection from corrupting a current connection
between the same hosts using exactly the same ports.
This will only happen if (1) a client reconnects to the
same server in a short window of time (less than 2
maximum segment lifetimes, or about 4 minutes); and
(2) in between these connections, the client makes some
number of other connections that is an exact multiple of
its ephemeral port range.> This is sufficiently unlikely

2The smallest ephemeral port range we could find was 3975 [26].

that TRODS does not handle this possibility. However,
because the client cannot be changed, TRODS’ use of
the timestamp must not interfere with the client’s PAWS
processing. To enforce PAWS, the client will drop all
packets with a server timestamp that is deemed too
“old”. TRODS ensures timestamps are non-decreasing
in modular 32-bit space,’ so they will always be accepted
by the client.

To summarize, the TCP timestamp option provides 32
bits that the client will echo back with two constraints:
the timestamps must be non-decreasing in modular 32-
bit space and they still must provide accurate RTT mea-
surement. These 32 bits cannot naively hold the objec-
tID and objectISN: The objectISN alone is 32 bits and
the objectID has been unconstrained until now. Thus,
TRODS must reduce the number of bits needed for the
objectID and objectISN to fit into the TCP timestamp
option, while still adhering to these two constraints.

The 5 Bit ObjectISN. The objectISN can be derived
by summing two values: the TCP connection’s initial
sequence number (ISN) and the length of the response
header. TRODS uses this property, as well as small
changes at both the TCP and HTTP levels, in order to
store the objectISN in 5 bits rather than 32.

At the TCP level, we fix the connection’s ISN to a
value derived from the client’s IP and port. This avoids
needing any bits to store the connection’s ISN, but raises
some security concerns about connection hijacking that
we address in §5.3.

If the response header is longer than a TCP segment
size (typically 1448 bytes with the TCP Timestamp op-
tion), then the entire response needs to be stored in the
key-value store regardless. Consequently, we only con-
sider response headers that are less than 1448 bytes.
Storing its length still requires [1g 1448] = 11 bits. How-
ever, TRODS uses an HTTP-level optimization to reduce
this further: It pads the response header to a multiple of
64 bytes, which reduces the number of bits needed to
[1g[1448/64]] = 5. TRODS pads the header by adding
linear white space to the last header field, which HTTP
clients ignore [9]. Our choice to pad to 64-byte multiples
is arbitrary; we could make the response header 128-byte
aligned and then only need 4 bits for the response length.

When TRODS pads the header, it misaligns the TCP
sequence number space between the client and server:
The client has now received more bytes that the server
has sent. TRODS modifies the sequence numbers in all
subsequent packets to correct for this difference.

The 7 Bit Timestamp. TRODS ensures accurate RTT
measurement by passing packets to the server’s TCP
layer with the appropriate timestamps replaced. When
the TCP layer passes TRODS a packet for transmission,

3That is, s, > ts, when 0 < (ts, —ts3,) < 23!



TRODS saves the timestamp in a per-connection 128-
entry array. It then overwrites the packet’s original times-
tamp with its own value that includes a 7-bit index into
that connection’s array. When TRODS receives a packet
to pass up to the local TCP stack, it uses the 7-bit in-
dex embedded in its own timestamp to look up the origin
timestamp, which it swaps in before sending the packet
up the stack.

The use of a 7-bit index limits the number of outstand-
ing timestamps to 128, and TRODS blocks packets to
stay under this limit. With a normal MTU size of 1500
bytes, this means at most 187KB can be in flight from the
server at any point. TRODS changes the client’s adver-
tised TCP window size to be conservatively smaller than
this amount—causing its local TCP stack to buffer data if
more than 187KB is to be sent. Because TRODS’ limit is
in terms of packets and not bytes, however, it also queues
packets if more than 128 are outstanding. This behavior
seems reasonable for most web servers, but if this limit is
too low for a service, it can increase the size of the array
and bit-length of the index, at the cost of requiring ei-
ther further response header padding or supporting fewer
objectIDs.

The 20 Bit ObjectID. The objectID is normally repre-
sented by a long string, such as a file path or full URL.
This cannot be embedded in a timestamp, so TRODS
places known objectIDs in a global array that is repli-
cated on each server. TRODS then identifies a unique
objectID by embedding its array index into the times-
tamp. With 20 bits, TRODS can uniquely identify over
one million objects. If a service has more objects than
can fit in the array, it can use the timestamp option as the
persistent store for its most popular million objects and a
key-value store for less popular objects. Given the Zip-
fian nature of Web traffic [5], the million popular objects
that can use the TCP timestamp option should cover the
majority of a service’s traffic. TRODS can also consis-
tently update this array to account for new or newly pop-
ular objects, but we omit a description of this behavior
for brevity.

Ordering the Fields. Finally, TRODS orders its fields
in the timestamp option carefully, as shown in Figure 3,
to ensure they pass the client’s PAWS check by being
non-decreasing in modular 32-bit space. The timestamp
index resides in the highest-order bits, followed by the
objectISN, while the objectID resides in the lowest-order
bits. The objectID and objectISN field do not change
once set, but the timestamp index does: it increases and
eventually wraps around. By placing it in the high-order
bits, TRODS ensures that when it wraps around, the
numerical representation of the timestamp itself wraps
around and thus remains non-decreasing.

| IP | TCP | Payload

Timestamp Option

{ ObjectISN offset \
—

L7 [ s ] 20 |
L J L J

T T
Timestamp Index ObjectID Index

Per-Connection TS Table Global ObjectID Table
0 timestamp, 0 objectID,
1 timestamp, 1 objectID,

127 | timestamp,,, 2201 | objectiD,u

Figure 3: The relationship between a packet, its TCP
timestamp option, the fields TRODS shoehorns into that
option, the per-connection timestamp table, and the global
objectID table.

5 Security Concerns

The use of TRODS introduces some security concerns:
attackers can spoof packets to try to initiate TRODS
failover; they can modify TCP timestamps to attempt to
gain access to unauthorized content; and they can more
readily guess TCP sequence numbers to spoof or hijack
a TCP connection. In this section, we describe how
TRODS mitigates each of these concerns.

5.1 Denial-of-Service Attacks

Bogus ACKs and Requests.  An attacker can send
requests or ACK packets to a TRODS-enabled service
with spoofed, random client addresses, attempting to
cause TRODS to failover non-existing connections. Af-
ter all, TRODS’ normal response to an unknown request
or ACK packet is to initiate failover to its local appli-
cation instance, wasting both application and persistent
store resources.

TRODS can limit its vulnerability to such DoS attacks
by only initiating failover when it can verify that it re-
ceived this packet because another server recently failed.
To support this, we replicate the load balancing infor-
mation to the TRODS instance on each server, i.e., its
key range in the case of consistent hashing, or the server
pool size and its number in the case of mod n hashing.
If a failure-initiating packet arriving at a server is outside
its known range (i.e., it should not be selected given the
packet’s 5-tuple and its knowledge of the load balancer’s
hashing scheme and state), then the server would only
have received this packet if the load balancer’s server
pool recently changed. In this case, the server initiates
failure. Otherwise, if the packet is in the server’s known
range, it is dropped for being illegitimate, as it should
have been in the server’s local hashtable. After some qui-
escence period following a failover, the liveness monitor



updates each affected server with new load balancing in-
formation.

Therefore, TRODS mitigates this failure-initiation
DoS attack, as it can be performed only temporarily on
the servers directly affected by another’s failure. TRODS
can weaken this attack further by giving normal packet
processing higher priority than failover processing.
This reduces the attack from a denial-of-service to a
denial-of-failure.

Clients Forcing the Slow Path. A client can force
TRODS onto the slow path by sending requests that
are longer than two packets and thus need to be saved
to the key-value store. It can also force TRODS onto
the slow path by sending a request that results in a
multi-packet response header, which also needs to be
saved to the key-value store. In either case, TRODS has
no way to distinguish legitimate slow-path connections
from malicious ones, so it must serve them all. However,
TRODS limits the damage an attacker can do by lowering
the processing priority of slow-path connections, as it
does with failover. Thus, slow path attacks can still
degrade the service of other slow-path connections, but
they have more difficulty in degrading the service of
normal connections.

5.2 Accessing Unauthorized Content

When TCP timestamps are used for persistent storage,
a client can potentially download an object they do not
have permissions to access, by sending an ACK packet
that will trigger failover with a timestamp that indexes
an unauthorized objectID. This is partially unavoidable
when timestamps are used, but given the enhancements
to TRODS in §5.1, clients can only trigger failover after
an actual failure has occurred. Thus, this attack will only
work when a server has failed recently, and the attacker
can guess the objectID index for the object it desires.
If these security protections are not sufficient, a service
should use TRODS’ key-value store for all protected
content. With TRODS-KYV, the objectID of the client’s
download cannot be modified by the client.

5.3 TCP Sequence Number Guessing

‘When TRODS-TS is used, the server uses an ISN that is
generated deterministically from the client’s IP and port.
This will ring alarm bells for anyone familiar with TCP
sequence number guessing attacks [19]. In these attacks,
an attacker spoofs a SYN packet from a client, and then
spoofs an ACK packet that acknowledges a guess of the
server’s ISN. If this guess is correct, it completes the
TCP three-way handshake and the attacker can send a
data packet that appears to be from the client.

TRODS avoids this attack by generating the ISN from
a secure hash of the client IP, port, and a private key that
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Figure 4: HTTP throughput experiment using a single
server process. We show median throughput of 5 trials of
an unmodified server, a server running TRODS-TS, and a
server running TRODS-KYV is shown. Error bars indicate
the minimum and maximum throughputs.

is known to all the servers in the cluster. This allows
TRODS to know the ISN for a connection without using
any of the bits in the timestamp, while still making the
ISNs appear random. Now an attacker can only learn the
ISN of a connection if it is on path and thus already has
access to it.

6 Evaluation

In this section we explore the cost of running TRODS.
We examine this cost in terms of both decreased through-
put and increased latency.

Implementation The TRODS implementation is ap-
proximately 3,000 lines of C code. It is a loadable ker-
nel module for Linux 2.6.32.3 and using it does not re-
quire recompiling the base kernel. The current TRODS
implementation handles the normal case, where none of
our assumptions from section §3 are violated. We have
implemented TRODS using each of the persistent stores
from section §4.

Experimental Setup All of our experiments used a
single client machine and a single server machine. Each
machine has 8 2.3GHz cores and 8 GB of memory and is
connected to a 1Gbps switch.

We use memcached 1.4.4 [10] without expiration
or eviction as our key-value store and we use lighttpd
1.4.23 [16] as our web server.

6.1 Throughput

We ran two sets of experiments to examine how TRODS
affects the maximum throughput of a web server. In
our first experiment, shown in figure 4, we turn off all
but one of the cores on the server machine and ran the
web server as a single process that uses 100% CPU. In
this experiment TRODS operations in the kernel steal
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Figure 5: HTTP throughput experiment using eight server
processes. We show median throughput of 5 trials of an
unmodified server, a server running TRODS-TS, and a
server running TRODS-KYV is shown. Error bars indicate
the minimum and maximum throughputs.

cycles that the web server could have otherwise used for
serving more requests. In our second experiment, shown
in figure 5, all 8 cores on the server were used by 8 server
processes. Both figures show the median, minimum, and
maximum throughput of 5 trials for each setup. Each trial
consisted of 25 client processes continuously fetching a
webpage for 40 seconds. We exclude the first and last 5
second of each trial to avoid including artifacts from the
systems warming up and cooling down.

In the first experiment TRODS-TS causes a de-
crease in throughput from 14,455 requests/sec to
13,038 requests/sec, for minimum size 1B web pages.
TRODS-KYV reduces throughput even more to 10,169
requests/sec. This larger drop is due to TRODS-KV
stealing more cycles that TRODS-TS because it needs
to communicate with another machine in the datacenter.
As the size of the webpages increases, however, the
web server becomes less CPU bound and as a result
TRODS-TS and TRODS-KV become more competitive
with the unmodified service. For example, when pages
are 16KB, the unmodified service achieves 6796 re-
quests/sec, TRODS-TS achieves 5815 requests/sec, and
TRODS-KYV achieves 5335 requests/sec.

In the second experiment the web server is no longer
CPU bound and TRODS processing has a smaller effect
on throughput. TRODS-TS is within 1,000 requests/sec
of the unmodified system for all page sizes and TRODS-
KV is within 3,000 requests/sec.

6.2 Latency

Table 2 shows the median and 99th percentile latencies
for different phases of 10,000 serial fetches of a 1 byte
webpage. The latencies are measured by analyzing tcp-
dump logs of the client’s connections.

Notice that despite the extra processing required when
TRODS-TS is used, there is little impact on the latency of
a connection. TRODS-KV similarly shows little impact
from processing in most phases of a connection. It
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Normal | TRODS-TS | TRODS-KV
SYN-SYN | 90 (95) 89 (93) 90 (94)
Req-ACK 87 (90) - -
Req-Resp.1 | 137 (150) | 135 (149) 256 (282)
Total 353 (372) | 362 (384) 490 (520)

Table 2: Median latency in us for the major phases of a
single HTTP connection through an unmodified service and
different implementations of TRODS. Parentheses show the
99th percentile.

does, however, have significantly higher latency in the
“request to first response packet” phase. During this
phase, TRODS-KV blocks the response until the save
to the persistent store has completed, which result in an
additional 119 us of latency.

7 Non-Static Objects

Throughout the paper we have assumed that objects are
entirely static. We now explore how TRODS works with
the two non-static object types.

Versioned Objects. Seemingly versioned ob-
jects, such as a user’s profile picture on a social
networking site, are typically static content. Rather
than each version being named identically (e.g.,
user_profile.jpg), they are usually each named uniquely
(e.g., user_profile_contenthash.jpg). Thus, even if the
latest “version” of an object changes during failover, as
defined in some database or other mutable state, the new
server will continue the delivery of the correct, static
object because its objectID will uniquely identify it.

Dynamic Objects. Some objects never exist statically
and are always generated dynamically by the service,
e.g., web pages produced by PHP and database lookups.
TRODS could handle failover for these objects by ex-
tracting all the inputs to their generation and feeding
them into the recovering server.

If the input is entirely contained in a client’s request,
TRODS can simply include the relevant fields in the
objectID. For instance, if the input is the URI and the
client’s cookie, TRODS could store both of these values.
Then, if TRODS needs to failover the connection, it
could use both in the request it sent the new server.

If the input is not entirely contained in the request—
e.g., it includes the result of a gettimeofday or a
random call—the service operator needs to make two
modifications to use TRODS. First, the service needs
to be modified to return all input it used in a special
X-TRODS HTTP header. TRODS will remove this
header from the response and save it to the key-value
store along with the objectID and objectISN. Then,
if the connection needs to be recovered, TRODS will
include this header in the request to the new server.



Second, the service must be modified to use the input
data from the optional X—TRODS header. Now, when
a new server gets a request for a dynamic object that
includes a X-TRODS header, it will use the same input
values and deterministically generate the same object as
the original server.

8 Related Work

Virtual Machines. Previous researchers have explored
failover at the virtual machines level [2, 3, 4, 7, 8].
This general-purpose failover approach should work for
all kinds of connections. TRODS represents a different
point in the design space than these system; TRODS
focuses on high performance for object delivery services,
while these systems sacrifice efficiency for generality.

New Transport Layers. Several solutions for failure
recovery introduce new transport layer protocols or prim-
itives. Trickles [20] uses a new transport layer protocol
and a new sockets API to make one end of a connection
stateless. SCTP [23] is a transport layer protocol that,
among many other things, allows a client to have connec-
tions to multiple servers it can switch between. TCP Mi-
grate [21] can be used to migrate a connection from one
server to another, which can then be used with a soft-state
synchronization protocol between servers to accomplish
failover [22]. M-TCP [24] is a another TCP-like trans-
port protocol designed to support migration. Whereas all
of these solutions require changes to the client’s TCP/IP
stack, TRODS does not require any client-side changes.

TCP Failover. Moving up the stack, there is a large
body of work on failover for TCP connections that do
not require changes to clients. FT-TCP [27] accom-
plishes TCP failover by logging (persistently storing) ev-
ery packet in a TCP connection on a primary server to
a backup server. Then, if the primary server fails, the
(cold) backup runs through the TCP connection, and,
once it catches up to the client’s current position in the
stream, it begins serving the client. As this can make the
time to failover a connection arbitrarily long, they also
describe a hot backup that processes all packets upon re-
ceiving them. FI-TCP is more general than TRODS, as
it applies to all deterministic TCP services. However,
FT-TCP pays for this generality with increased over-
head. Every packet must be logged or processed in FT-
TCP, while TRODS-KV only “logs” once per object and
TRODS-TS avoids it entirely. Koch et al.describe a sys-
tem [15] that is very similar to FI-TCP’s hot backup
approach. ST-TCP [18] is another primary-backup sys-
tem that avoids some logging overhead placing the pri-
mary and backup on the same L2 network and having
the backup snoop on the primary’s traffic. Zhang et
al. [28] describe a similar system that uses a stateful
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load-balancer to explicitly transmit packets to both the
primary and backup. The Backdoors [25] avoids logging
by using programmable NICs to extract TCP and appli-
cation state from the failed server’s memory after an OS
crash.

HTTP Failover. CoRAL [1] is primary-backup system
targeted at HTTP. All packets bound for the primary are
first routed through the backup who logs them. The pri-
mary then uses application-level knowledge to identify
the full reply and durably store it on the backup. TRODS
is more efficient that CoORAL because it avoids durably
storing the entire reply. Luo et al. [17] describes a system
for HTTP failover where the load balancer (dispatcher
in their terminology) terminates the client’s connections.
Once a client has sent an entire request, the load bal-
ancer stores it and forwards it onto a server. Then if that
server fails before fully responding, the load balancer re-
connects to a new server to continue. This moves the
problem of failure from the servers to the load balancer.

TCP Timestamps.  We are not the first to use the
TCP timestamp option for embedding state. Giffin et
al. [11] use the low order bits of the TCP timestamp
as a covert channel for undetectable communication. In
addition, starting with version 2.6.26, the Linux kernel
added support for window scaling and SACK options in
syn cookies by encoding their value in the lowest 9 bits
of the TCP timestamp [12].

9 Conclusion

TRODS is a fully backwards-compatible system for in-
troducing transparent failover to object delivery services.
TRODS leverages cross-layer knowledge of both appli-
cation and TCP state to exert control over unmodified
clients. This control allows TRODS to coerce clients into
providing storage and initiating failover.

References

[1] N. Aghdaie and Y. Tamir. Coral: A transparent fault-
tolerant web service. Journal of Systems and Software,
82(1), 2009.

R. Bradford, E. Kotsovinos, A. Feldmann, and
H. Schitberg. Live wide-area migration of virtual ma-
chines including local persistent state. In Proc. Virtual
Execution Environments, Jun 2007.

[2]

[3] T. C. Bressoud. Tft: A software system for application-
transparent fault tolerance. In Proc. Symposium on Fault-
Tolerant Computing (FTCS), Jun 1998.

T. C. Bressoud and F. B. Schneider. Hypervisor-based
fault tolerance. ACM Trans. Computer Systems, 1996.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalanr, R. Stata, A. Tomkins, and J. Wiener. Graph

(4]

(51



(6]

[7

—

[8

—

(9]

(10]

(1]

(12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

structure in the web. In Proc. World Wide Web Conference
(WWW), May 2000.

T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
1996.

C. Clark, K. F. S. Hand, J. G. Hansen, E. Jul, C. Limpach,
L. Pratt, and A. Warfield. Live migration of virtual ma-
chines. In Proc. Networked Systems Design and Imple-
mentation (NSDI), May 2005.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchin-
son, and A. Warfield. Remus: high availability via asyn-
chronous virtual machine replication. In Proc. Networked
Systems Design and Implementation (NSDI), Apr 2008.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC 2616: Hypertext
transfer protocol — HTTP/1.1, Jun 1999.

B. Fitzpatrick. Memcached: a distributed memory
object caching system. http://www.danga.com/
memcached/, 2009.

J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts.
Covert messaging through tcp timestamps. In Proc. Pri-
vacy Enhancing Technologies, Apr. 2002.

Improving  syncookies. http://lwn.net/
Articles/277146/, Apr 2008.

V. Jacobson, R. Braden, and D. Borman. RFC 1323: Tcp
extensions for high performance, May 1992.

D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the World Wide Web. In Proc. Symposium on Theory of
Computing (STOC), May 1997.

R. R. Koch, S. Hortikar, L. E. Moser, and P. M. Melliar-
Smith. Transparent tcp connection failover. Proc. De-
pendable Systems and Networks (DSN), June 2003.
Lighttpd. http://www.lighttpd.net/, 2010.

M. Luo and C. Yang. Constructing zero-loss web ser-
vices. In Proc. INFOCOM, Apr. 2001.

M. Marwah, S. Mishra, and C. Fetzer. Tcp server fault
tolerance using connection migration to a backup server.
In Proc. Dependable Systems and Networks (DSN), Jun
2003.

R. Morris. A weakness in the 4.2bsd unix tcp/ip software.
Technical Report TR-117, Bell Labs, 1985.

A. Shieh, A. C. Myers, and E. G. Sirer. A stateless
approach to connection-oriented protocols. ACM Trans.
Computer Systems, 26(3), 2008.

A. C. Snoeren and H. Balakrishnan. An end-to-end
approach to host mobility. In Proc. Mobile Computing
and Networking Conference(MobiCom), Aug. 2000.

A. C. Snoeren, D. G. Andersen, and H. Balakrishnan.
Fine-grained failover using connection migration. In
Proc. Symposium on Internet Technologies and Systems
(USITS), Mar. 2001.

R. Stewart. RFC 4960: Stream control transmission
protocol, Sep 2007.

12

[24]

[25]

[26]

(27]

(28]

F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migra-
tory tcp: connection migration for service continuity in
the internet. In Proc. Intl. Conf. Distributed Computing
Systems (ICDCS), July 2002.

F. Sultan, A. Bohra, S. Smaldone, Y. Pan, P. Gallard,
I. Neamtiu, and L. Iftode. Recovering internet service
sessions from operating system failures. IEEE Internet
Computing, 9(2), 2005.

Windows ephemeral port range. http://support.
microsoft.com/kb/929851, 2009.

D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C. Bres-
soud. Practical and low-overhead masking of failures of
tcp-based servers. ACM Trans. Computer Systems, 27(2),
2009.

R. Zhang, T. F. Abdelzaher, and J. A. Stankovic. Efficient
tcp connection failover in web server clusters. In Proc.
INFOCOM, Mar. 2004.


http://www.danga.com/memcached/
http://www.danga.com/memcached/
http://lwn.net/Articles/277146/
http://lwn.net/Articles/277146/
http://www.lighttpd.net/
http://support.microsoft.com/kb/929851
http://support.microsoft.com/kb/929851

	Introduction
	Why Not an End-to-End Solution?

	Protocol
	Architecture
	The Anatomy of an ODS Connection
	Failover

	TRODS For HTTP
	Normal Operation
	Failure Recovery
	Extensions

	Persistent Storage
	Key-Value Store
	TCP Timestamps

	Security Concerns
	Denial-of-Service Attacks
	Accessing Unauthorized Content
	TCP Sequence Number Guessing

	Evaluation
	Throughput
	Latency

	Non-Static Objects
	Related Work
	Conclusion

