
SCAFFOLD Demonstration
Object resolution server and minimal L2 network configuration

March 1, 2010

1 Implementation
For our demonstration, we have implemented version 0.1 of
the SCAFFOLD protocol and network architecture. To re-
tain a degree of backwards compatibility while injecting the
essential components of our architectural reboot into the net-
work, we implemented the SCAFFOLD protocol using the
IPv4 packet header, repurposing the source/destination IP
address for flowID: 8 bit ssID, 8 bit hostID, 16 bit sockID,
and source/destination port for objectIDs (16bit).

Although the lack of bits limits routing and naming scala-
bility, reusing the IPv4 header allows us to explore and eval-
uate the SCAFFOLD design with a view to interoperabil-
ity. We retain L2 compatibility with commodity switches by
leaving MAC addresses intact. On the wide-area, placing the
ssID bits in the upper portion of the IP address allow us to
route between domains over BGP announced prefixes.

SCAFFOLD’s network routers are OpenFlow switches.
We set forwarding rules on IP prefixes for matching flowIDs
in label routers, and exact port numbers for resolving ob-
jectIDs in object routers. Our decision to limit SCAF-
FOLD to manipulating UDP/IPv4 headers was also for rough
compatibility with the OpenFlow specification. The con-
troller is built on the NOX network control platform, which
is designed to manage the forwarding tables of OpenFlow
switches. Our extensions to NOX, about 1100 lines of
python and 1500 lines of C++ in total, introduce an RPC-
like API for managing host and object-related events.

The SCAFFOLD network stack provides a socket library
that directly mirrors traditional BSD sockets. To enable rapid
prototyping and to exploit existing socket functionality (e.g.,
buffering), we implemented SCAFFOLD’s stack mostly as a
user-level network stack. Our implementation was tested and
evaluated on machines running Ubuntu Linux, and it sup-
ported send and receive rates up to 324 Mbps (more in §3).
The implementation consists of about 7500 non-blank lines
of C++ code.

2 Test Environment
The SCAFFOLD test environment currently consists of a
6-node topology with 3 hosts, 2 label routers, and a sin-
gle combined object router/controller, as depicted in Fig-
ure 1. Each node is an Sun X2200 server with 2 Quad-Core
2.3 Ghz AMD-64 CPUs and 3 GigE ports, running Ubuntu

Controller/
Object Router

Label Router BLabel Router A

Host 1 Host 2Host 3

Gigabit Ethernet

GRE Tunnel

Figure 1: Simple SCAFFOLD network topology for performance
micro-benchmarks and mobility/fail-over experiments.

9.04. The host nodes are configured with kernel-mode Click,
SCAFFOLD stack daemon running in user-level Click, and
the statically-linked SCAFFOLD stack application library.
Label routers run an unmodified version of OpenvSwitch,
which is an OpenFlow switch implementation, including a
kernel datapath module. The object router/controller ma-
chine runs a modified OpenvSwitch that supports round-
robin object resolution, along with the NOX-based SCAF-
FOLD object controller.

Hosts 1 and 3 connect to label router A and host 2 connects
to label router B. All links between hosts and label routers
are switched GigE. Each label router has a direct connection
to the other, as well as point-to-point GRE tunnels to the ob-
ject router. All SCAFFOLD network elements are connected
to a common switched GigE control network for establishing
administrative channels to the controller.

Although the label and object routers reside in the same
layer-2 subnet in our testbed, we do not assume this in the
general case. Since SCAFFOLD flowIDs repurpose the IPv4
header, preventing direct routing of SCAFFOLD packets
over IP, we leverage ethernet over IP GRE tunnels to pro-
vide L3 point-to-point connectivity across subnets between
label routers and control plane elements .

We ported three network applications to demonstrate the
performance and efficacy of the SCAFFOLD network: Iperf,
TFTP (a UDP-based FTP program), and PowerDNS (a pop-
ular high-performance DNS nameserver). Modifying these
programs to use the SCAFFOLD socket API required rea-
sonably small changes: 240 lines for Iperf (out of 5934 LoC),
90 for TFTP (3452 LoC), and 160 for PowerDNS (15K

 0
 50

 100
 150
 200
 250
 300
 350

 0 50 100 150 200 250 300 350Se
nd

 /
R

ec
v

ra
te

 (M
bp

s)

IPerf input rate (Mbps)

send rate
recv rate

Figure 2: Send and receive rate as a function of Iperf input rate
for 1400 Byte SCAFFOLD bound datagrams. Packets are forwarded
through 2 label routers between the Iperf client and server.

LoC). Iperf required more changes, as it deals primarily with
network performance measurement and thus has networking
system calls throughout the code. In TFTP, we added an ad-
ditional application-level continuation mechanism and adap-
tive RTT-based timeout for use in our failover and client mo-
bility experiments; these totaled another 136 lines of code.
Finally, we note that while we only modified PowerDNS’s
UDP-based front-end DNS interface (not the back-end plug-
gable storage), the port took less than 3 hours.

3 Throughput and Latency
Figure 2 shows SCAFFOLD throughput for bound data-
grams between hosts 1 and 2 which are 2 label router hops
away. With a 1400 byte payload, a peak send rate of
324 Mbps was matched by a receive rate of 324 Mbps, with
1.611 ms jitter and 0.019% packet loss. When the input
bandwidth was increased beyond this rate, both send and
receive rates dropped off as shown. The drop in send rate
indicates a bottleneck in the SCAFFOLD user-level stack.
An otherwise idle SCAFFOLD host transmits packets with
a latency of 53.49 µs for 1472 byte payloads. The maxi-
mum packet loss observed during the test was 1.4%. Next,
we measured the round-trip time (RTT) for maximum- and
minimum-sized SCAFFOLD bound datagrams between the
2 hosts in our test environment with 2 label router hops be-
tween them. Stack latency was determined by recording
timestamps when packets are sent or received on host inter-
faces and comparing them against application timestamps for
the same packets. From Table 1, we infer that stack latency
accounts for 54% to 60% of the RTT in our setup, which was
around 500 µs. Microbenchmarks for various SCAFFOLD
API methods are shown in Table 2. Note that connect_sf is
a few orders of magnitude larger than the RTT, due to SYN
packets requiring resolution at the object router.

From these numbers, we conclude that significant
optimization—such as moving Scafd functionality into the
kernel—will be necessary to reach the Gbps rates that BSD
sockets provide today. However, having a prototype that of-
fers reasonably good performance allows us to rapidly port
applications and experiment with new protocol features.

Metric Payload Mean Stdev
bytes µs µs

RTT 18 397.16 47.57
RTT 1472 504.82 72.65
Stack receive latency 18 89.86 10.03
Stack send latency 18 48.21 8.71
Stack receive latency 1472 83.28 17.42
Stack send latency 1472 53.49 11.75

Table 1: Network vs stack latency for bound datagrams

Method Task Mean Stdev
µs µs

connect_sf Object resolution and handshake 2925.00 494.18
bind_sf Register an object with Controller 3069.40 141.58
send_sf Send 18 byte payload to Scafd 69.21 20.84
send_sf Send 1472 byte payload to Scafd 56.95 23.76
listen_sf Set listening within Scafd 80.4 5.28
close_sf Send FIN, and receive FIN-ACK 600.30 285.51
close_sf Close socket on receiving RST 14.80 3.68

Table 2: Latency of SCAFFOLD socket calls for bound datagrams

4 Session Migration and Client Mo-
bility

To evaluate SCAFFOLD’s connection reestablishment facil-
ity, we performed two experiments to demonstrate session
migration and client mobility. These experiments are meant
to demonstrate SCAFFOLD’s qualitative behavior, as op-
posed to providing any true quantitative evaluation.

In the first experiment, a TFTP client on host 1 be-
gins to download from TFTP server 1 on host 3 over a
bound flow. Note that these hosts are both physically con-
nected to the label router A. Five seconds into the download,
server 1 decides to shed load, i.e., by calling close(·,
SEND_FAIL) on its socket, which causes the client to re-
ceive a FAIL in response to its packets. The client stack on
host 1 issues a RSYN to reestablish the connection with a
new TFTP instance. TFTP Server 2 on host 2 (connected
to the label router B) receives the object-router-resolved
RSYN and completes the 3-way handshake. Note that this
switchover is transparent to the TFTP client application.
When the TFTP client resends its “failed” data ACK, this
new server 2 receives the notification and resumes the down-
load process in midstream. The migration is repeated again
at 11.3s when server 2 closes its connection. As shown in
Figure 3, the impact on client throughput and progress is
negligible, with a less than 100ms delay introduced by the
TFTP ACK-retry timeout. Process failover would work in a
similar manner: The SCAFFOLD stack responds to packets
destined to a failed socket with a FAIL message.

In the second experiment, a TFTP client on host 1starts a
file transfer with a server on host 2, connected to label router
B. Midway through the download, host 1 migrates from label
router A to label router B: We literally unplugged host 1 from
one switch and plugged it into the other. On link-up detec-
tion, the SCAFFOLD stack on host 1 re-issues a join request
to the controller. When the controller sees that host 1 has

2

0 2 4 6 8 10 12 14 16
0

100
200
300
400
500
600
700
800

Time (s)

Th
ro

ug
hp

ut
 (K

bp
s)

Server 1
Server 2

0 2 4 6 8 10 12 14 16
0

100
200
300
400
500
600
700
800

Time (s)

Th
ro

ug
hp

ut
 (K

bp
s)

Client

Figure 3: TFTP Server Failover. Top: TFTP server 1 sheds an ac-
tive client connection at 5.6s, causing server 2 to resynchronize trans-
parently with the client. At 11.3s, server 2 offloads the same client
again, causing the flow to migrate back to server 1. Bottom: The TFTP
client’s throughput remains consistent throughout its download, with
only small outages (< 100ms) during failovers between servers.

0 2 4 6 8 10 12 14
0

100
200
300
400
500
600
700

Time (s)

Th
ro

ug
hp

ut
 (K

bp
s)

in
te

rfa
ce

 d
ow

n

in
te

rfa
ce

 u
p

Client

Figure 4: TFTP Client Mobility. The client transfer is interrupted
at the 5.7s mark when it “moves” between label routers. The inter-
face revives at 8.9s and the client stack re-joins the network at its new
location, resulting in a new hostID and triggering connection reestab-
lishment. The transfer continues within 100 ms once the connection is
reestablished.

changed gateway label routers, it assigns host 1a new hostID,
expunges the old hostID from the object and label routers,
and reinstalls forwarding and object resolution rules refer-
encing the new hostID label. Host 1’s stack then resyncs its
open connections, including the TFTP client’s bound flow to
the TFTP server. Once again, when the TFTP client’s ACK-
retry succeeds after stack reinitialization, the download con-
tinues without a hitch over the migrated connection.

3

	Implementation
	Test Environment
	Throughput and Latency
	Session Migration and Client Mobility

