
ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 1 of 41

G E N I

Global Environment for Network Innovations

ProtoGENI Control Framework
Overview

Document ID: GENI-SE-CF-PGO-01.4

February 27, 2009

Prepared by:

The GENI Project Office

BBN Technologies

10 Moulton Street

Cambridge, MA 02138 USA

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 2 of 41

Issued under NSF Cooperative Agreement CNS-0737890

TABLE OF CONTENTS

1 DOCUMENT SCOPE .. 4

1.1 PURPOSE OF THIS DOCUMENT ... 4

1.2 CONTEXT FOR THIS DOCUMENT .. 4

1.3 RELATED DOCUMENTS ... 4

1.3.1 National Science Foundation (NSF) Documents ... 5

1.3.2 GENI Documents .. 5

1.3.3 Standards Documents .. 5

1.3.4 Other Documents ... 5

1.4 DOCUMENT REVISION HISTORY .. 6

2 GENI SYSTEM OVERVIEW .. 7

2.1 MAJOR ENTITIES AND THEIR RELATIONSHIPS ... 7

2.2 FEDERATED SUITES ... 8

2.3 SLICES .. 9

3 GENI CONTROL FRAMEWORK OVERVIEW .. 10

3.1 DEFINITION ... 10

3.2 REQUIREMENTS .. 10

3.3 IMPLEMENTATION APPROACH FOR SPIRAL 1 PROTOTYPES ... 11

4 PROTOGENI CONTROL FRAMEWORK STRUCTURE ... 12

4.1 REGISTRY ... 13

4.2 AGGREGATES AND COMPONENTS ... 15

4.3 PRINCIPALS ... 15

4.4 SERVICES .. 16

4.5 SLICES .. 16

4.6 CONTROL MESSAGE FLOWS .. 16

4.7 REGISTRY AND AGGREGATE (COMPONENT) INTERFACES ... 17

4.8 OPS AND MGMT INTERFACES .. 18

4.9 SLIVER INTERFACES .. 19

4.10 IDENTIFICATION .. 19

4.11 AUTHENTICATION ... 20

4.12 AUTHORIZATION ... 21

4.13 CREDENTIALS ... 21

4.14 TICKETS .. 23

4.15 RESOURCE SPECIFICATION (RSPEC) .. 24

5 PRINCIPALS IN THE PROTOGENI CONTROL FRAMEWORK ... 26

5.1 IDENTIFICATION .. 26

5.2 REGISTRATION .. 26

5.3 AUTHENTICATION ... 27

5.4 PRIVILEGES AND ROLES .. 27

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 3 of 41

6 AGGREGATES AND COMPONENTS IN PROTOGENI CONTROL FRAMEWORK 28

6.1 IDENTIFICATION .. 28

6.2 REGISTRATION .. 28

6.3 RESOURCE ALLOCATION ... 28

7 SLICES IN PROTOGENI CONTROL FRAMEWORK.. 29

7.1 IDENTIFICATION .. 29

7.2 REGISTRATION .. 29

7.3 CREDENTIAL ISSUE ... 30

8 EXPERIMENT SETUP IN PROTOGENI CONTROL FRAMEWORK 31

8.1 RESOURCE AND TOPOLOGY DISCOVERY ... 31

8.2 RESOURCE SHARING ... 32

8.3 RESOURCE AUTHORIZATION AND POLICY IMPLEMENTATION ... 33

8.4 RESOURCE ASSIGNMENT ... 34

8.5 COMPONENT PROGRAMMING .. 34

8.6 DISCONNECTED OPERATION OF COMPONENTS .. 34

8.7 DISCONNECTED OPERATION OF RESEARCHERS ... 34

8.8 RESOURCE TO RESOURCE CONNECTIONS .. 35

8.9 SETUP VERIFICATION .. 35

9 EXPERIMENT EXECUTION IN PROTOGENI CONTROL FRAMEWORK 36

9.1 EXPERIMENT AND SLIVER CONTROL ... 36

9.2 EXPERIMENT DATA COLLECTION AND MANAGEMENT ... 36

9.3 FORENSIC AND USAGE DATA COLLECTION AND MANAGEMENT ... 36

9.4 EXPERIMENT STATUS EVENTS AND NOTIFICATIONS ... 36

9.5 EXPERIMENT STATUS COMMANDS AND RESPONSES ... 37

10 FEDERATION IN PROTOGENI CONTROL FRAMEWORK .. 38

10.1 FEDERATED AGGREGATES AND COMPONENTS.. 38

10.2 FEDERATED SUITES ... 38

11 PROTOGENI CLUSTER C SPIRAL 1 IMPLEMENTATION ... 39

11.1 START OF SPIRAL 1 ... 39

11.2 COMPLETION OF SPIRAL 1 ... 40

2

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 4 of 41

1 Document Scope

This section describes this document’s purpose, its context within the overall GENI document tree,
the set of related documents, and this document’s revision history.

1.1 Purpose of this Document

This document provides an overview of the ProtoGENI control framework being implemented for
Spiral 1.

It is a DRAFT, to be used for discussion in the GENI Facility Control Framework working group.

Some of the material in this document is drawn from the GENI System Requirements document.

Some of the material in this document is drawn from the GENI System Overview document.

Some of the material in this document is drawn from the GENI Control Framework Requirements
document.

Some of the material is drawn from a draft “Slice-based Facility Architecture (SFA)” document,
dated August 8, 2008, and edited by Larry Peterson. In particular, Larry Peterson and the others who
contributed to the SFA document are recognized for their significant contributions, including: Scott
Baker, Ted Faber, Jay Lepreau, Soner Sevinc, Stephen Schwab, Leigh Stoller, Robert Ricci, and John
Wroclawski.

Much of the material in this document was provided by Rob Ricci and Leigh Stoller, both directly
and via the ProtoGENI wiki. Thank you!

1.2 Context for this Document

Figure 1-1. below shows the context for this document within GENI’s overall document tree.

Figure 1-1. This Document within the GENI Document Tree.

1.3 Related Documents

The following documents of exact date listed are related to this document, and provide background
information, requirements, etc., that are important for this document.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 5 of 41

1.3.1 National Science Foundation (NSF) Documents

Document ID Document Title and Issue Date

N / A

1.3.2 GENI Documents

Document ID Document Title and Issue Date

GENI-SE-SY-RQ-01.9 GENI System Requirements, January 16, 2009

http://groups.geni.net/geni/attachment/wiki/SysReqDoc/GENI-SE-SY-RQ-01.9.pdf

GENI-SE-SY-SO-02.0 GENI System Overview, September 19, 2008,
http://www.geni.net/docs/GENISysOvrvw092908.pdf

GENI-SE-CF-RQ-01.3 GENI Control Framework Requirements, January 9, 2009,

http://groups.geni.net/geni/attachment/wiki/GeniControlFrameworkRequirements/
010909b%20%20GENI-SE-CH-RQ-01.3.pdf

1.3.3 Standards Documents

Document ID Document Title and Issue Date

N / A

1.3.4 Other Documents

Document ID Document Title and Issue Date

GDD 06-10 "Towards Operational Security for GENI," by Jim Basney, Roy Campbell, Himanshu
Khurana, Von Welch, GENI Design Document 06-10, July 2006.

http://www.geni.net/GDD/GDD-06-10.pdf

GDD 06-23 "GENI Facility Security," by Thomas Anderson and Michael Reiter, GENI Design
Document 06-23, Distributed Services Working Group, September 2006.
http://www.geni.net/GDD/GDD-06-23.pdf

N/A "GMC Specifications," edited by Ted Faber, Facility Architecture Working Group,
September 2006.

http://www.geni.net/wsdl.php

GDD 06-24 "GENI Distributed Services," by Thomas Anderson and Amin Vahdat, GENI Design
Document 06-24, Distributed Services Working Group, November 2006.
http://www.geni.net/GDD/GDD-06-24.pdf

GDD 06-38 "GENI Engineering Guidelines," edited by Ted Faber, GENI Design Document 06-38,
Facility Architecture Working Group, December 2006.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 6 of 41

http://www.geni.net/GDD/GDD-06-38.pdf

GDD 06-42 "Using the Component and Aggregate Abstractions in the GENI Architecture," by
John Wroclawski, GENI Design Document 06-42, Facility Architecture Working
Group, December 2006.

http://www.geni.net/GDD/GDD-06-42.pdf

N/A “Slice Based Facility Architecture,” v1.10, August 8, 2008, by Larry Peterson, et.al.
http://groups.geni.net/geni/attachment/wiki/GeniControlBr/v1.10%20%20080808%20
%20sfa.pdf

N/A “Large Scale Virtualization on the Emulab Network Testbed,” June, 2008, by Mike
Hibler, et.al.

http://www.cs.utah.edu/flux/papers/virt-usenix08-base.html

N/A “Implementing the Emulab-PlanetLab Portal: Experience and Lessons Learned,”
December, 2004, by Kirk Webb, et.al.

http://www.cs.utah.edu/flux/papers/portal-worlds04-base.html

N/A “Decentralized Trust Management,” 1996, by Matt Blaze, et.al, AT&T Research.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.6276

N/A “Compliance Checking in the PolicyMaker Trust Management System,” 1998, by Matt
Blaze, et.al, AT&T Research.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2525

N/A “The Role of Trust Management in Distributed Systems Security,” 1999, by Matt
Blaze, et.al, AT&T Research.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.7726

1.4 Document Revision History

The following table provides the revision history for this document, summarizing the date at which
it was revised, who revised it, and a brief summary of the changes. This list is maintained in reverse
chronological order so the newest revision comes first in the list.

Revision Date Revised By Summary of Changes

01.1 12/5/08 H. Mussman Completed draft, for limited review, based on material
provided by Rob Ricci and Leigh Stoller.

01.2 12/15/08 H. Mussman Updated draft to follow structure from Control Framework
Requirements document.

01.3 1/14/09 H. Mussman Updated with small changes.

01.4 2/27/09 H. Mussman Updated after discussion with Rob Ricci and to include
new content from ProtoGENI wiki.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 7 of 41

2 GENI System Overview

2.1 Major Entities and their Relationships

Figure 2-1 presents a block diagram of the GENI system covering the major entities within the
overall system. Optional (but desirable) parts are shown “grayed-out.” See the GENI System
Overview document at http://www.geni.net/docs/GENISysOvrvw092908.pdf for more details.

Figure 2-1. GENI System Diagram.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 8 of 41

2.2 Federated Suites

Figure 2-2 provides a system diagram illustrating federation between one GENI suite and another.
As a hypothetical example, it depicts federation between a US-based GENI suite and a compatible suite
in the European Union (EU).

EU
Comp
EU-A

EU
Admin
and
Ops
Org

EU
Clearinghouse
(federated suite)

Trust

Trust

DOE Aggr Z
(federated aggr)

Comp Z

GENI Admin and Ops Org

GENI Aggr A

Operator

Admin

Ops
and
Mgmt
Tools

Admin
and
Account
Tools

Host
A1

Host
Ax

GENI Aggr B

Comp B

Measurement Plane

Control Plane

Ops and Mgmt Plane

Experiment Plane

EU
Comp
EU-Z

Research
Org EU-A

Researcher

Research
Org EU-B

Slice
Admin

PI

Local
Principal
Registry

Exper
Control
Tools

Link

Link

Route

Route

Measurement Plane

Control Plane

Ops and Mgmt Plane

Experiment Plane

GENI Clearinghouse

Comp
Registry

Principal
Registry

Ticket:
Store
Query

Principal:
Register
Authen
Query

Slice
Registry

Ticket
Log

Software
Reposit

Soft Mod:
Store
Get
Query

Aggr Mgr
with Ops Portal

Admin Oper

Aggr Mgr
with Ops Portal

Admin Oper

Research
Org A

Researcher
Exper
Control
Tools

Research
Org B

Slice
Admin

PI

Local
Principal
Registry

Aggr Mgr
with Ops Portal

Admin Oper

Help
Desk
Tools

Slice:
Register
Cred Issue
and/or
Tkt Broker
Query

Comp:
Register
Discover
Query

Figure 2-2. System Diagram with Federated Infrastructure Suites.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 9 of 41

2.3 Slices

Figure 2-3 shows two researchers from different organizations managing their two experiments in
two corresponding slices. Each slice spans an interconnected set of slivers on multiple aggregates
and/or components in diverse locations. Each researcher remotely discovers, reserves, configures,
programs, debugs, operates, manages, and teardowns the “slivers” that are required for their
experiment. Note that the clearinghouse keeps track of these slices for troubleshooting or emergency
shutdown.

Figure 2-3. Two GENI Slices.

An aggregate manager a) interacting with the researcher (or her proxies) via the control plane and
b) configuring the devices over internal interfaces establishes Slivers. Components may be virtualized,
and can thus provide resources for multiple experiments at the same time, but keep the experiments
isolated from one another. In addition, each slice requires its own set of experiment support services.
Furthermore, as shown in Slice B, “opt-in” users may join the experiment running in a slice, and thus be
associated with that slice.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 10 of 41

3 GENI Control Framework Overview

3.1 Definition

The GENI control framework is defined in the GENI Control Framework Requirements document
at
http://groups.geni.net/geni/attachment/wiki/GeniControlFrameworkRequirements/010909b%20%20GE
NI-SE-CH-RQ-01.3.pdf

It includes the following clearinghouse entities in a GENI suite:

 Principal registry and related services.

 Component registry and related services.

 Slice registry and related services.

 An optional ticket log and related services, for holding “sliver records”, used in
administering and managing the GENI suite.

 An optional software repository, for holding software objects that are required to
administer, operate or manage the GENI suite.

It includes the following entities associated with each aggregate or component that is providing
experiment resources in a GENI suite:

 An aggregate manager and related services.

 An optional component manager and related services, for components that are part of an
aggregate.

 An optional broker service and related services, that typically functions as an aggregate-of-
aggregates manager in the GENI suite.

It includes the following entities associated with a principal who is utilizing, administering or
managing experiment resources in a GENI suite.

 A principal acting from a server utilizing a browser client and/or a set of helper tools

 A principal service acting on behalf of a principal , utilizing a browser client and/or a set of
helper tools, that appears as a principal in the GENI suite.

The GENI control framework defines:

 Interfaces between all entities.

 Message types including basic protocols and required functions.

 Message flows necessary to realize key experiment scenarios.

3.2 Requirements

The GENI control framework requirements are presented in the GENI Control Framework
Requirements document at http://geni.bbn.com:8080/docushare/dsweb/Services/Document-1234 .

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 11 of 41

3.3 Implementation Approach for Spiral 1 Prototypes

Five control framework implementations are being developed for Spiral 1 prototypes, based on the
following systems and software packages:

• PlanetLab, a system that allows researchers to conduct experiments on hosts located at various
sites; see http://svn.planet-lab.org/ and http://groups.geni.net/geni/wiki/PlanetLab .

• ProtoGENI, which is based Emulab, a system that allows researchers to conduct experiments
on hosts and other equipment located in various sites; see https://www.protogeni.net/trac/protogeni and
http://groups.geni.net/geni/wiki/ProtoGENI .

• ORCA resource allocation software; see http://nicl.cod.cs.duke.edu/orca/ and
http://groups.geni.net/geni/wiki/ORCABEN .

• ORBIT, a system that allows researchers to conduct experiments on a federated arrangement of
wireless networks, utilizing peridically disconnected resources; see http://www.orbit-
lab.org/wiki/WikiStart and http://groups.geni.net/geni/wiki/ORBIT .

• TIED, the Trial Integration Environment in DETER, a system that allows researchers to
conduct experiments on a federated arrangement of hosts located in various sites; see
http://seer.isi.deterlab.net/ and http://groups.geni.net/geni/wiki/TIED .

Each control framework will be used for one cluster of projects, and typically provides the
clearinghouse and a reference implementation of the aggregate manager for its cluster. Researchers in a
given cluster will typically be able to conduct experiments only on the prototype aggregates and
components within that cluster.

At the completion of Spiral 1, these control framework prototypes will be compared and evaluated.

For Spiral 2 prototyping during the following year, improvements and/or consolidations are
expected. Useful features in one control framework may be adopted by another. A particular project
may choose to move from one control framework to another. And, it is also possible that two (or more)
control frameworks may merge, or possibly just federate.

Sections 4 though 11 present an overview of the ProtoGENI-based control framework
implementation.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 12 of 41

4 ProtoGENI Control Framework Structure

A block diagram of the ProtoGENI control framework structure is shown in Figure 4-1, which
includes:

 A Clearinghouse which includes a Registry for Principal, Slice and Aggregate/Component
Records, a set of common Registry Services, and certain specialized Principal, Slice and
Component Services.

 Slice Authority Services, that are currently provided within existing Emulab Sites.

 Aggregates, each of which includes a ProtoGENI Aggregate Manager and zero, one or
many Components. Each of the current aggregates comprise all of the hosts and other
resources accessible within an Emulab Site.

 Principals, including Researchers and their associated Slice Managers.

Aggregate Cluster 100 (e.g., Emulab Site in Utah)

ProtoGENI Aggr Mgr

Aggr Intfc
Ops Portal

Slice Manager
(Experiment Control Tools)

Researcher 01

Researcher 99

Sliver Server

Sliver Intfc

Component Host 001

Comp Mgr

Comp Intfc
Ops Portal

SSH keysSSH keys

GID, PKI keys, SSL Cert

GID, PKI keys, Certs GID, PKI keys, Certs

Aggregate 199

ProtoGENI Slice Auth Services:
Get Slice Credential,
Create Slice

Registry Intfc

User Rec

Emulab Management

Emulab Web Intfc

Emulab Site (Utah)

Principal Rec

ProtoGENI Clearinghouse (Utah)

Registry Services: Register, Remove, Resolve, PostCRL
Principal Services: GetCredential
Slice Services: Shutdown
Component Services: ListComponents

Registry Intfc

Experiment Rec

Slice Rec

Agg/Comp Rec

Emulab Site (other)

GID, PKI keys, Certs

GID, PKI keys, Certs

SelfCred

SliceCred

Web Client

XMLRPC Client
(e.g., Python)

Figure 4-1. ProtoGENI Control Framework Structure.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 13 of 41

The ProtoGENI control framework structure is based on the “Slice-based Facility Architecture”
(SFA) summarized in
http://groups.geni.net/geni/attachment/wiki/GeniControlBr/v1.10%20%20080808%20%20sfa.pdf , but
it includes a number of engineering decisions that are consistent with a "prototype" implementation.
Note that the SFA is based on earlier GENI efforts, including: "GMC Specifications," "GENI
Distributed Services," and "GENI Engineering Guidelines."

For a current view of the ProtoGENI design, see the ProtoGENI wiki at
http://www.protogeni.net/trac/protogeni and
http://www.protogeni.net/trac/protogeni/wiki/BecomingAProtoGENISite

4.1 Registry

ProtoGENI implements a centralized clearinghouse and Registry that is co-located with the Emulab
site in Utah; for more information, see
http://www.protogeni.net/trac/protogeni/wiki/ClearingHouseDesc .

The Registry exports a Registry Interface.

Per the SFA, each registered item has a Global Identifier (GID) that includes a UUID and a Global
NAME (GNAME). The UUID is a random number, generated following X.667 (RFC4122), that is
guaranteed to be unique. Once assigned to an item, its UUID should never change. The registry
Resolve() and GetCredential() functions take either a GNAME or a UUID as the target of the lookup
operation.

Principals (users) and Slices are registered in the Clearinghouse by the Slice Authorities at each
Emulab instance.

Question: Aggregates (currently a federated Emulab site) are registered by?

Operationally, the Utah clearinghouse does a limited set of tasks:

 Allows registration, deletion, and resolution of various principle objects. Currently limited
to slices, users, slice authorities, aggregate managers, and components.

 Provides a list of all known aggregate managers. The information returned includes the
URL a client can contact to get a list of currently available resources.

 Exports a centralized "emergency shutdown" facility that can be used to terminate a
misbehaving slice.

 Assists in the registration of new federates as they come on-line.

 Collects and distributes Certificate Revocation Lists from all of the federates. These CRL's
are generated periodically by the federates so that others in the federation can be made
aware of users that have been terminated or who have had to generate a new certificate
(GID).

Other items of note:

 Only one instance of the clearinghouse is in operation. While the architecture eventually
calls for multiple clearinghouses, there is no support in the current code for federating
multiple clearinghouses together.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 14 of 41

 Everything is stored in a mysql database.

 The location (URL) of the clearinghouse is hardwired, in the sense that the initialization
script that federates run, downloads the GID (certificate) of the clearinghouse from Utah.
Inside that certificate is a URL (in the Subject Alternative Name of the certificate).

 Most operations are restricted to known Authorities (SA,CM); mere users cannot access the
clearinghouse, except where noted below.

The current implementation of the clearinghouse is highly dependent on the Emulab source code. A
number of Emulab libraries and support systems are used by the clearinghouse, but in general it is not
really necessary to have an actual Emulab testbed running in order to run an instance of the
clearinghouse. A future project is to provide an installation target for the Emulab code that would install
the bare minimum needed to run a clearinghouse.

As noted above, mere users do not generally talk to the clearinghouse. Rather, known Slice
Authorities and Component Managers are the only ones that can register and delete entries, as well as
resolve records. Authorities can get a credential to access the clearinghouse in one of two ways;

 Request a credential via XML-RPC (see below). The credential is signed using the
clearinghouse's GID (certificate).

 Generate a self-signed credential. In this case, the authority uses its own certificate (GID)
to sign the credential. This is the same certificate that the authority then uses to establish
the SSL connection. The credential is accepted because the signature is valid, and because
clearinghouse has that GID in its database.

The clearinghouse is accessed through XML-RPC over SSL.

Clients supply a client certificate as part of SSL connection establishment. This certificate must be
signed by an authority known to the clearinghouse (these authorities correspond to the federates).

The clearinghouse's URL is: https://www.emulab.net/protogeni/xmlrpc/ch .

The Clearinghouse is somewhat simple at this point, mostly because the size of the federation is
small, as are its needs. Items that need to be addressed are:

 There is no web interface to see what is in the Clearinghouse. Admin people must use
mysql commands to look at the tables.

 There is no up to date view of slices that are instantiated (slivers).

 No global view of what resources are currently available.

 No expiration of registry entries and no renew.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 15 of 41

4.2 Aggregates and Components

 A ProtoGENI aggregate may comprise all of the resources running in an Emulab site, including
cluster nodes, switches and other resources.

An Aggregate Interface is exported from an aggregate comprising an Emaulab site, but individual
resources such as nodes and switches do not export a component interface; all operations on individual
resources are via the aforementioned Aggregate Interface. See Figure 4.2 and
http://www.protogeni.net/trac/protogeni/wiki/ComponentManagerAPI

Private communication channels are then invoked to handle any operations required on individual
resources.

Question: How will aggregates be built that do not include an Emulab site?

Figure 4-2. An Aggregate and Its Internal Structure.

4.3 Principals

ProtoGENI principals (users) include:

 Researchers, who utilize the ProtoGENI suite for running experiments, deploying
experimental services, etc.

Question: What other principals are defined in GENI?

Each Researcher uses an associated Slice Manager to setup and run experiments. It includes:

 A web client.

 An XML_RPC client.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 16 of 41

 An SSH client.

See Figure 4.1.

4.4 Services

(Not yet defined in ProtoGENI.)

4.5 Slices

From a Researcher's perspective, a slice is an interconnected set of reserved resources, or slivers, on
heterogeneous substrate aggregates (components). Researchers can remotely discover, reserve,
configure, and program, debug, operate, manage, and teardown resources on these aggregates
(components) to setup, utilize and then teardown the slivers necessary to complete an experiment. See
Section 2.3.

From an Operator's perspective, slices are the primary abstraction for accounting and
accountability—resources are acquired and consumed by slices, and external program behavior is
traceable to a slice, respectively.

Question: Does a ProtoGENI slice map to an Emulab experiment when an aggregate comprises an
Emulab site?

4.6 Control Message Flows

Control message flows in the ProtoGENI control framework are summarized by:

 Researchers that periodically connect and communicate with Registries and Aggregates via
defined interfaces and APIs so that they can acquire the resources necessary for them to
setup and execute experiments. See Figure 4.3.

 In these transactions, Aggregates supply resources, and Researchers consume resources.

 Since the Aggregates are expected to be widely distributed, and connections are made over
an IP network that may be the open Internet, the control message flows must be secure, and
the Researchers must be properly authenticated and authorized.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 17 of 41

Figure 4.3 – Researcher to Registry and Aggregate Message Flows

(Changes required in figure)

4.7 Registry and Aggregate (Component) Interfaces

In ProtoGENI, communications between a Researcher using their Slice Manager and the Registry
and Aggregate (Component) Interfaces follows a web services model. See Figure 4.3. The current
decision is to utilize:

 A custom API for each of these interfaces which utilizes web service messages.

 The Researcher (principal) is on the client side, and uses an xmlrpc client to talk to the
servers, such as python.

 The Registry and Aggregate (Component) Interfaces are on the server side.

 Web service messages that utilize XML_RPC and http(s) protocols for messages.

 A WSDL that specifies the message structures.

 An XSD that specifies the data structures.

 http(s) utilizes TLS to provide a secure connection.

 http(s) provides for client authentication at the server by using a root certificate.

Question: Is http(s) used to provide for server authentication at the client?

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 18 of 41

4.8 Ops and Mgmt Interfaces

(Note yet defined in ProtoGENI.)

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 19 of 41

4.9 Sliver Interfaces

In ProtoGENI, a "sliver" can consist of local cluster nodes, including vlan links between them,
cluster nodes at different sites with GRE tunnels between then, and PlanetLab nodes.

Unlike Emulab experiments, raw ProtoGENI nodes are currently just that, raw. None of the Emulab
setup is done on those nodes, like experimental interfaces initializing interfaces with IP addresses,
building accounts for other project members, starting programs automatically with the event system,
etc. This will eventually be supported in the "cooked" interface.

Once a Sliver has been created on a component, a Sliver Interface is typically provided on the
component to allow the Researcher to program, configure and operate a server within the underlying
component, here designated the Sliver Server. The Sliver Server may be a physical server, or a virtual
machine. The Sliver Server may represent a component (host) itself, or a part of the component, e.g., a
controller acting as a protocol engine.

Typically, a Researcher on their server connects with the Sliver Server via the Sliver Interface using
a Secure Shell (SSH) login. See Figure 4.3.

An SSH login provides for almost complete control of the Sliver Server within the component, and
it is important that that server by well isolated from other slices to prevent security breaches.

Client authentication is provided in an SSH login. The Sliver server permits an SSH connection for
a client holding a private key matching a public key held in a local folder. Both public and private keys
are held in the SSH client, and the public key is loaded into the Sliver Server using a call to the
Aggregate Interface.

The UpdateSliceAttributes() function at the Aggregate Interface allows for the specification of user
keys, init scripts, and other as yet undefined items, to be associated with a slice on a component. The
call can be made prior to any RedeemTicket() or InstantiateSlice() calls (before a sliver exists on the
component) so that keys and the like can be pre-staged.

 UpdateSliceAttributes(Credential, AttrNames[], AttrValues[]);

where AttrNames is currently one of "keys" or "initscript". When specifying keys for a slice, the
value is another array that allows multiple keys to be associated with multiple researchers, thus binding
a set of researchers (and their keys) to the slice, on that component.

4.10 Identification

Per the SFA, each registered item has a GENI Identifier (GID) that includes a Human Readable
Name (HRN) and a UUID.

The UUID is a random number, generated following X.667 (RFC4122), that is guaranteed to be
unique.

The registry Resolve() and GetCredential() functions take either a HRN or a UUID as the target of
the lookup operation.

A GID (GENI Identifier) is simply an SSL certificate with a Distinguished Name (DN) field that
conforms to a set of conventions. There is also some additional info in the Subject Alternative Name
part of the certificate.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 20 of 41

Stored in the DN field of the certificate are the user's: UUID ; Human Readable Name (HRN); and
their email address.

Fundamentally, it is the UUID that determines which user; a user may regenerate their certificate,
but they will have the same UUID embedded in it.

The HRN is included for compatibility with other systems, but within ProtoGENI it is not used for
identification (although it can be used in Resolve() operations).

Each of other types of principle objects in ProtoGENI also has a unique UUID and thus a certificate
(GID) associated with it. In most cases these certificates are used for identity purposes, not
authentication (as in an SSL session). For example, when constructing a credential for a slice, the target
of the credential is the GID for the slice. More on this in the credential section below.

4.11 Authentication

The current approach to the authentication of ProtoGENI entities is summarized by:

 One Public Key Infrastructure (PKI) that covers all ProtoGENI registries, slice authorities,
aggregates and researchers (principals).

 This PKI provides all necessary certificates, and allows verification to be done using a
limited number of root certificates.

 Certificate Revocation Lists (CRLs) are provided by the entities.

See https://www.protogeni.net/trac/protogeni/wiki/AuthImpl

ProtoGENI employs a "web of trust" model in which all of the members of the federation hold
copies of all root keys (trust anchors). Since the number of trusted "roots" will be small at first, we
exchange root SSL certificates out of band, and populate a certificate directory that can be used for
verifying client certificates when they are presented.

Each member of the ProtoGENI federation is itself an Emulab installation. Part of the installation
process for each federate is the generation of a self-signed certificate authority certificate, that serves as
the "root" for that Emulab. This root certificate is subsequently used to sign, among other things, the
certificates of its users.

Each user has an encrypted SSL certificate issued by their home Emulab that authenticates them to
the entire federation, by virtue of the fact that the certificate is signed by one of the federation members
(trust anchor).

This certificate becomes their ProtoGENI identity; it allows them to initiate an SSL session with
any of the RPC servers in the federation. Since all of the federates maintain a cache of the root
certificates, the signatures can be trivially verified at any federate.

In short, SSL's built in client verification is used to step back through the chain of issuers, which in
the current prototype is usually of length one. As a result, ProtoGENI does not currently use or
implement GID chains.

Note that we will support GID chains in the future, so that we conform to the SFA spec and so that
we can inter-operate more easily with other GENI Spiral 1 implementations. The current approach was
taken so that we can develop the other parts of ProtoGENI, while we wait for the specification of GIDs
to be finalized.

CRLs (Certificate Revocation Lists) are supported by ProtoGENI. Each member of the federation
runs a cron job that generates a CRL once a day, and posts that CRL to the Clearinghouse. The

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 21 of 41

Clearinghouse collects the CRLs and combines them into a single bundle and posts them for all of the
federates. The CRLs allow the federates to be notified in a timely manner of users that are no longer
allowed to use the ProtoGENI APIs (say, if a user account is terminated). CRLs also allow users to
change their certificates; the old certificate is revoked so that it can no longer be used.

4.12 Authorization

The current approach to authorization in the ProtoGENI suite is summarized by:

 The exchange of credentials, including tickets, that mediate resource authorization and
assignment by Aggregates, plus resource control in Aggregates.

 These credentials are signed (certified) by the appropriate authorities (slice) and objects
(aggregates and slivers) to give them some intrinsic value.

 To certify a credential (ticket), an authority or object signs the token using its own private
key, which is then followed by signatures from its responsible authorities, up to the root
authority. In the current implementation, there is always only one signature.

 The Public Key Infrastructure (PKI) that is used to authenticate principals, etc., provides all
of the keys and other structure to sign and verify credentials.

 The Aggregate that receives this credential can then verify it using a limited set of root
certificates.

 This follows the approach that was developed in “trust management systems” and in early
GENI designs.

 This follows the SFA; see
http://groups.geni.net/geni/attachment/wiki/GeniControlBr/v1.10%20%20080808%20%20s
fa.pdf .

Currently, ProtoGENI has implemented a few simple policies that federates (Aggregates) can
apply to remote users.

 Individual nodes may be prevented from being viewed and allocated by remote users

 All access for remote users can be turned off (eg. during times of high local need, such as
near the end of a semester)

 The total number of nodes allocated to remote users can be limited

These are by no means a complete set, and it's possible for federates (Aggregates) to implement
their own policies if they wish.

4.13 Credentials

A ProtoGENI credential is the basis for granting privileges to users, where privileges take the form
of a small XML document describing what actions may be taken by a particular user (Researcher)
towards a specific ProtoGENI object (Aggregate). Each credential has an owner and a target.

In the current implementation, the set of privileges roughly corresponds to the allowed API calls.

For example, a Researcher requires a Credential to access an Aggregate via the Aggregate Interface
to have resources authorized and assigned to create slivers, and to control slivers. Once a Researcher
presents a credential to an Aggregate Manager, the Aggregate Manager then decides whether to
authorize the requested function, or not.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 22 of 41

Slivers in ProtoGeni are first class objects; every sliver is controlled via a credential that is created
when the sliver is instantiated. RedeemTicket() and InstantiateSlice() both return a credential to the
caller. While a credential can be requested via the MA interface, we feel that to be an unnecessary
additional step.

A ProtoGENI credential as currently defined is shown in
https://www.protogeni.net/trac/protogeni/attachment/wiki/Authentication/credential.rnc and includes:

 ## A credential granting privileges or a ticket.

 credentials = element credential {

 ## The ID for signature referencing.

 attribute xml:id {xs:ID},

 ## The type of this credential. Currently a Privilege set or a

 Ticket.

 element type { "privilege" | "ticket" | "capability" },

 ## A serial number.

 element serial { xsd:string },

 ## GID of the owner of this credential.

 element owner_gid { xsd:string },

 ## GID of the target of this credential.

 element target_gid { xsd:string },

 ## UUID of this credential

 element uuid { xsd:string },

 ## Expires on

 element expires { xsd:dateTime },

 ## Privileges or a ticket

 (PrivilegesSpec | TicketSpec | CapabilitiesSpec),

 ## Optional Extensions

 element extensions { anyelementbody }*,

 ## Parent that delegated to us

 element parent { credentials }?

 }

 SignedCredential = element signed-credential {

 credentials,

 signatures?

 }

The current implementation of credentials uses the XML Digital Signatures format, and the
XMLSEC library to generate and verify the signed document.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 23 of 41

A credential is signed using the XMLSIG specification, located at http://www.w3.org/TR/xmldsig-
core/ . To facilitate delegation, a credential can have an optional chain of parent credentials, each one
signed. An original (un-delegated) credential will not have a parent. A credential is delegated by
creating a new credential, setting the parent to the original credential, and then signing the entire blob.
The credential can then be verified by reversing the operation, verifying the signature at each level. An
existing tool called xmlsec1 (http://www.aleksey.com/xmlsec/) is used for the verification. A
secondary step is then used to ensure that the rules of delegation were not violated (ie: an inner
credential does not include a privilege that an outer credential did not allow to be delegated).

Each credential has its own UUID to allow for easier bookkeeping, and for simple revocation. A
UUID is also useful when supporting unmediated splitting of tickets; the CM needs to be able trace
back the split ticket to the original ticket.

We currently feel (although not very strongly) that delegation should be at the individual privilege
level, not at the credential level, except when the credential is really a ticket.

Credentials are extensible, using the "extensions" field above. No format is defined as of yet, but
the intent is to be able pass along data in the credential that has been signed along with the rest of the
credential data. When delegating a credential, the extension data must remain unchanged.

As an example, consider the user Joe who has created a slice nicknamed MySlice. When Joe asks
his Slice Authority to create this new slice, a new credential is formed that includes, among other items:

Joe's GID (UUID, HRN, email)

MySlice's GID (UUID, HRN, email)

A list of tokens

A digital signature

Joe's GID is the one that is maintained by his home Emulab. The GID for MySlice is a brand new
certificate which includes a new UUID assigned to MySlice. The list of tokens defines what operations
(destroy, modify, etc) Joe may take with respect to MySlice. Lastly, a digital signature that covers all of
this information. The entire credential, still an xml document, is returned to Joe so it can be used in
subsequent operations. The next thing Joe might do is destroy the slice. To do that, Joe will initiate an
SSL session with the Slice Authority RPC server, passing the credential to the DeleteSlice() operation.
The operation succeeds because the credential is valid (the signature verifies) and Joe is the user in the
credential.

Regarding the last statement, the signature verifies because any unauthorized changes would
invalidate the digital signature. In addition, only Joe can use this credential because only Joe has the
pass phrase to his personal certificate, that he uses to initiate the SSL session with the RPC server.
Thus, the certificate (GID) associated with the client of the session is the same as the GID contained in
the credential.

Please see the credential specification for more details.

4.14 Tickets

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 24 of 41

In ProtoGENI, a Ticket is a specific kind of credential. See Section 4.13.

Tickets are a variant of a credential, that include a description of the resources being promised by
an Aggregate in the form of an RSpec.

As with credentials, tickets includes the GID of the user and the GID of the slice to which the ticket
refers. Thus, a ticket grants the holder a "promise" to assign the set of resources in the RSpec, to the
slice that is referenced in the ticket. Once the ticket is redeemed, it is effectively useless in subsequent
operations.

Credentials and tickets both include an expiration date. This expiration is currently unused in
credentials, but is set to a very short time (on the order of minutes) for tickets. Component Managers
will not honor a ticket that has expired; a new ticket must be requested, although the same resources
may no longer be available.

4.15 Resource Specification (RSpec)

A resource specification (RSpec) describes a component in terms of the resources it possesses and
constraints and dependencies on the allocation of those resources.

The ProtoGENI rspec is described at https://www.protogeni.net/trac/protogeni/wiki/RSpec . It is
based on the ptop/vtop format designed for assign. This format is fairly simple, and has the advantage
of being in production use for 8 years now in Emulab. This format does have some parts that are
specific to Emulab and assign: these will simply be ignored to begin with, and we will remove them
from the RSpec or implement them as extensions as we move to a full GENI RSpec.

The RSpec schema is given in the "RelaxNG Compact" syntax. The advantage of doing this is that
RNC is very human-readable and flexible, and can be translated to the W3C XML schema, which is
more widely supported, but is incredibly hard to read/write by hand.

Key features of the ProtoGENI RSpec :

 Identifying resources
o All nodes and links are identified by a UUID
o There is also a "human readable" name field to aid readability

 Nodes
o Node have types
o Virtualization technology is included as a field

 Links
o Links are point-to-point: LANs and other "full connectivity" environments (such at the

Internet), a "LAN node" is created, and all members are linked to it.
o Links have bandwidth, a type, etc.
o Links endpoints reference Interfaces on Nodes

 Interfaces
o Endpoint of a link
o Named by node, plus an opaque interface name
o In progress: Interfaces will be first-class entities, declared as part of the component

they belong to
 Metadata

o A "valid until" field
o A "generated" time

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 25 of 41

Common topological elements, used by the ProtoGENI RSpec can be found at
http://www.protogeni.net/trac/protogeni/attachment/wiki/RSpec/top.rnc

Schema for most elements in the ProtoGENI RSpec 'body' can be found at

http://www.protogeni.net/trac/protogeni/attachment/wiki/RSpec/protogeni-rspec-common.rnc

Per the ProtoGENI implementation, an RSpec can include a request for a link between two nodes,
or a LAN between a set of nodes. ProtoGENI supports independent control of these links and LANs,
and even the individual interfaces on nodes attached to the links. As a result, ProtoGENI treats these
sub resources the same as slivers, creating credentials that the caller can use to control them. In addition
to the defined sliver operations in the API, ProtoGENI will export additional APIs that are specific to
these other resources.

Since Emulab clusters exporting the ProtoGENI APIs, are exporting n Aggregate Interface, the
resulting sliver (credential) might encompass a collection of resources (nodes and links). To operate on
an individual piece of that sliver, such a link, it must be possible to extract a credential that refers to that
link. ProtoGENI provides an extraction operation that takes a credential and a GNAME, and returns a
new credential for that specific resource. For example, to extract a credential for a link, you would use
the extraction operation on the credential for geni.emulab.slice0.link0, to get a credential for an
interface, geni.emulab.slice0.node0.eth0.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 26 of 41

5 Principals in the ProtoGENI Control Framework

5.1 Identification

Each principal (user) in ProtoGENI, such as a Researcher, has a unique GENI Identifier (GID) that
includes a Human Readable Name (HRN) and a UUID.

See Section 4.10.

Question: Who creates the UUID, and names the Researcher (principal)?

5.2 Registration

Each principal (user) is registered within the ProtoGENI suite, so that they can be identified and
authenticated.

See Figure 5-1 for the steps in registering a Researcher.

1
Researcher must be

a registered user at an
Emulab site (Utah)

2
Researcher requests SSL cert that is
transferred OOB to Researcher’s
Slice Manager

Aggregate Cluster 100 (e.g., Emulab Site in Utah)

ProtoGENI Aggr Mgr

Aggr Intfc
Ops Portal

Slice Manager
(Experiment Control Tools)

Researcher 01

Researcher 99

Sliver Server

Sliver Intfc

Component Host 001

Comp Mgr

Comp Intfc
Ops Portal

SSH keysSSH keys

GID, PKI keys, SSL Cert

GID, PKI keys, Certs GID, PKI keys, Certs

Aggregate 199

ProtoGENI Slice Auth Services:
Get Slice Credential,
Create Slice

Registry Intfc

User Rec

Emulab Management

Emulab Web Intfc

Emulab Site (Utah)

Principal Rec

ProtoGENI Clearinghouse (Utah)

Registry Services: Register, Remove, Resolve, PostCRL
Principal Services: GetCredential
Slice Services: Shutdown
Component Services: ListComponents

Registry Intfc

Experiment Rec

Slice Rec

Agg/Comp Rec

Emulab Site (other)

GID, PKI keys, Certs

GID, PKI keys, Certs

Web Client

XMLRPC Client
(e.g., Python)

3
Researcher
calls
GETCREDENTIAL
on clearinghouse
with SSL Cert
and
clearinghouse returns
SelfCred

SelfCred

SSL Cert

SelfCred

Figure 5.1 – Researcher Registration

Step 1: The Researcher must be a registered user at an Emulab site, e.g., the Utah Emulab site.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 27 of 41

Note: Each Emulab site has Projects, Groups and Members.

 There are currently approx 587 Projects at the Utah Emulab site. Each Project has
one Project Leader, who can delegate their responsibility.

 Each Project has one or more Groups. Groups within a Project are numbered
starting from 0 for the Default Group, then 1, 2, etc. In some cases, a Project
corresponds to a class, and then Groups are used to differentiate between class
teams.

 Experiments belong to a Group within a Project.

 Members are associated with each Project. Each Member has a Name, UserID and
a Role. Roles include: project_root; group_root; local_root_; user.

Question: Must a ProtoGENI Researcher have a particular role in the Emulab DB?

Step 2: The Researcher requests an SSL cert from the Emulab site, using the sites web interface; it
is then transferred out-of-band (OOB) to the Researcher’s server, for use by the Researcher’s Slice
Manager

Step 3: The Researcher calls the GetCredential function at the Clearinghouse Regsitry interface,
presenting its SSL certificate to allow client authentication; the clearinghouse returns a Self Credential.
The owner of this SelfCredential is the Researcher; the target of this SelfCredential is the
clearinghouse.

Question: Does this step leave a record with the clearinghouse registry?

Question: What about other ProtoGENI principals?

5.3 Authentication

Each ProtoGENI principal (e.g., Researcher) is authenticated using their SSL certificate. See
Section 4.11.

5.4 Privileges and Roles

As indicated in Section 4.13, each ProtoGENI principal (e.g., Researcher) receives a set of
privileges that roughly correspond to the allowed API calls, via a credential.

 Question: Does the Self Credential hold privileges for the ProtoGENI principal (e.g.,
Researcher)?

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 28 of 41

6 Aggregates and Components in ProtoGENI Control Framework

6.1 Identification

Each Aggregate in ProtoGENI has a unique GENI Identifier (GID) that includes a Human Readable
Name (HRN) and a UUID.

Question: Who creates the UUID, and names the Aggregate?

Question: What about Components?

6.2 Registration

 Each Aggregate must be registered within the ProtoGENI suite, including pointers (URLs) to the
Aggregate.

Question: Who does this? How is it done?

6.3 Resource Allocation

 By registering an Aggregate in the ProtoGENI suite, the administrator (owner) of the aggregate
indicates that they are willing to allocate resources to experiments in the ProtoGENI suite.

However, the information currently contained in the Aggregate Record does not provide any
information on the resources that can be utilized in ProtoGENI.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 29 of 41

7 Slices in ProtoGENI Control Framework

7.1 Identification

Each Slice in ProtoGENI has a unique GENI Identifier (GID) that includes a Human Readable
Name (HRN) and a UUID.

7.2 Registration

In ProtoGENI, a Slice is registered when a Researcher presents a Self Credential (and an SSL
certificate) to a Slice Authority (SA) service in an Emulab site, and requests a Slice Credential. See
Figure 7-1.

1a

Researcher
calls
GETCREDENTIAL
on slice authority
with SelfCred

2a

SA registers
slice
identified by
Name and UUID
in clearinghouse

SliceCred

2b

SA returns SliceCred (cert)
that binds researcher to slice,
signed by SA

Aggregate Cluster 100 (e.g., Emulab Site in Utah)

ProtoGENI Aggr Mgr

Aggr Intfc
Ops Portal

Slice Manager
(Experiment Control Tools)

Researcher 01

Researcher 99

Sliver Server

Sliver Intfc

Component Host 001

Comp Mgr

Comp Intfc
Ops Portal

SSH keysSSH keys

GID, PKI keys, SSL Cert

GID, PKI keys, Certs GID, PKI keys, Certs

Aggregate 199

ProtoGENI Slice Auth Services:
Get Slice Credential,
Create Slice

Registry Intfc

User Rec

Emulab Management

Emulab Web Intfc

Emulab Site (Utah)

Principal Rec

ProtoGENI Clearinghouse (Utah)

Registry Services: Register, Remove, Resolve, PostCRL
Principal Services: GetCredential
Slice Services: Shutdown
Component Services: ListComponents

Registry Intfc

Experiment Rec

Slice Rec

Agg/Comp Rec

Emulab Site (other)

GID, PKI keys, Certs

GID, PKI keys, Certs

SelfCred

SliceCred

Web Client

XMLRPC Client
(e.g., Python)

SelfCred

SA registers
Researcher
in clearinghouse

1b

Figure 7-1. Slice Registration and Slice Credential Issue.

Step 1: The Researcher calls the GetCredential function at a Slice Authority (SA) Service Registry
interface, and presents its SelfCredential (and an SSL certificate).

See http://www.protogeni.net/trac/protogeni/wiki/SliceAuthorityAPI for more information on the
SA API.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 30 of 41

Question: How does the SA, based on SSL cert and the SelfCredential, decide that it should issue
a slice? Does it always issue a requested slice?

Step 2a: The SA service creates the slice, identified by UUID and HRN, and registers it in the
ProtoGENI clearinghouse.

Question: Who creates the UUID and names the Slice?

Step 2b: The SA service registers the Researcher (principal) in the ProtoGENI clearinghouse.

7.3 Credential Issue

Step 1b: The SA service returns a SliceCredential that binds Researcher to Slice, and is signed by
the SA.

Note that there is a BindToSlice call that binds a local user to a slice so that the user may
manipulate the slice. This call can be invoked by any user with a valid slice credential. The newly
bound user can then request a slice credential using the GetCredential() above, providing the user with
all of the same rights as the original slice creator. Note that this call is provided in lieu of credential
delegation, which has not been implemented yet.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 31 of 41

8 Experiment Setup in ProtoGENI Control Framework

The ProtoGENI control framework provides all of the basic functions necessary for a GENI
researcher to setup an experiment.

8.1 Resource and Topology Discovery

The ProtoGENI control framework allows a Researcher, using the Component Registry, to discover
all of the resources available to them from the Aggregates associated with the ProtoGENI suite. See
Figure 8-1.

ProtoGENI uses a very simple resource discovery model. There are two phases:

 Phase 1: The Researcher gets a list of all physical resources - whether or not they are currently
available. The idea is that this operation does not need to be done often - possibly only once,
or possibly weekly, monthly, etc. This information is cached.

 Phase 2: The Researcher gets a list of which resources are currently available. This phase does
not return details about the physical hardware, simply a "bit" indicating whether each
component is available for use or not. This step in context-sensitive: ie. the query needs to be
made with the identity of the Researcher gets who will be requesting tickets, as the
(aggregate) components might make different policy decisions depending on who is asking.

Because all components are uniquely identifiable with UUIDs, it is easy to combine the results of
the second query with the results of the first, and feed this in to the slice embedding service.

The idea is to use optimistic resource reservation, as Emulab does: make the availability query right
before running the slice embedder, then attempt to get tickets for the components that were chosen. If
any have become unavailable in the meantime, simply hold on to the tickets you were able to grab, and
run the slice embedder again to replace the unavailable ones.

Question: How can they discover their interconnection topology?

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 32 of 41

1a

Researcher calls
ListComponents
on clearinghouse
with SliceCred

1b

Clearignhouse
Returns URLs
for all Aggregates

SliceCred

URL 001

URL 999

URL 001
2a
001

To each URL,
Researcher presents SliceCred
and calls DISCOVERRESOURCES

SliceCred

2b
001

Aggregate returns
list of component info as an RSpec

RSpec 001

2a
999

2b
999

RSpec 999

3

Researcher gathers
Rspecs
from all Aggregates

Aggregate Cluster 100 (e.g., Emulab Site in Utah)

ProtoGENI Aggr Mgr

Aggr Intfc
Ops Portal

Slice Manager
(Experiment Control Tools)

Researcher 01

Researcher 99

Sliver Server

Sliver Intfc

Component Host 001

Comp Mgr

Comp Intfc
Ops Portal

SSH keysSSH keys

GID, PKI keys, SSL Cert

GID, PKI keys, Certs GID, PKI keys, Certs

Aggregate 199

ProtoGENI Slice Auth Services:
Get Slice Credential,
Create Slice

Registry Intfc

User Rec

Emulab Management

Emulab Web Intfc

Emulab Site (Utah)

Principal Rec

ProtoGENI Clearinghouse (Utah)

Registry Services: Register, Remove, Resolve, PostCRL
Principal Services: GetCredential
Slice Services: Shutdown
Component Services: ListComponents

Registry Intfc

Experiment Rec

Slice Rec

Agg/Comp Rec

Emulab Site (other)

GID, PKI keys, Certs

GID, PKI keys, Certs

SelfCred

SliceCred

Web Client

XMLRPC Client
(e.g., Python)

Figure 8-1. Resource Discovery.

Step 1a: Researcher presents SliceCredential to the clearinghouse Registry and calls
ListComponents.

Step 1b: The clearinghouse Registry returns a list of arrays, where each array contains the GID
(certificate) of the manager. The URL and HRN can be extracted from the GID, but as a convenience
the array includes these as well.

Step 2a: To the Component Interface URL on each Aggregate, the Researcher presents ita Slice
Cred and calls DiscoverResources.

Step 2b: Each Aggregate returns a list of component info as an RSpec.

Step 3: The Researcher gathers RSpecs from all Aggregates.

8.2 Resource Sharing

In ProtoGENI, each aggregate provides for resource sharing among multiple researchers,
referencing multiple slices, and assigns each researcher their own sliver or slivers.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 33 of 41

8.3 Resource Authorization and Policy Implementation

The ProtoGENI control framework allows an Aggregate to authorize the assignment of resources to
a Researcher referencing a particular Slice, following local policies. See Figure 8-2.

URL 001
1a

To URL of Aggregate,
Researcher presents Slice Cred
and calls GETTICKET

SliceCred 021

1b
Aggregate returns
Ticket

Ticket 001

2a

To URL of Aggregate,
Researcher presents Ticket
and calls REDEEMTICKET

2b
Aggregate returns
Sliver Credential

SliverCred 001_001

Ticket 001

3

To URL of Aggregate,
Researcher presents SliverCred
and calls STARTSLIVER?

SliverCred 001_001

Notes:

1) Currently, aggregate gives
Ticket to anyone with
a valid SliceCred.

Aggregate Cluster 100 (e.g., Emulab Site in Utah)

ProtoGENI Aggr Mgr

Aggr Intfc
Ops Portal

Slice Manager
(Experiment Control Tools)

Researcher 01

Researcher 99

Sliver Server

Sliver Intfc

Component Host 001

Comp Mgr

Comp Intfc
Ops Portal

SSH keysSSH keys

GID, PKI keys, SSL Cert

GID, PKI keys, Certs GID, PKI keys, Certs

Aggregate 199

ProtoGENI Slice Auth Services:
Get Slice Credential,
Create Slice

Registry Intfc

User Rec

Emulab Management

Emulab Web Intfc

Emulab Site (Utah)

Principal Rec

ProtoGENI Clearinghouse (Utah)

Registry Services: Register, Remove, Resolve, PostCRL
Principal Services: GetCredential
Slice Services: Shutdown
Component Services: ListComponents

Registry Intfc

Experiment Rec

Slice Rec

Agg/Comp Rec

Emulab Site (other)

GID, PKI keys, Certs

GID, PKI keys, Certs

SelfCred

SliceCred

Web Client

XMLRPC Client
(e.g., Python)

Figure 8-2. Resource Authorization and Assignment, plus Sliver Control

Step 1a: To Component Interface URL of Aggregate, Researcher presents Slice Credential and
calls GetTicket function.

Question: Does this call include an RSpec?

Step 1b: Aggregate decides that it will authorize resources to this Researcher and the referenced
Slice using its local policy, and then returns a Ticket to the Researcher.

Currently, an Aggregate gives a Ticket to anyone with a valid Slice Credential, i.e., there is an
“always yes” local policy.

 Currently, the Ticket specifies a starting time of now, and an expires time of “very short”.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 34 of 41

8.4 Resource Assignment

The ProtoGENI control framework allows an Aggregate to assign resources to a Researcher
presenting a valid Ticket. See Figure 8-2.

Step 2a: To Component Interface URL of Aggregate, Researcher presents Ticket and calls
RedeemTicket function.

Step 2b: Aggregate assigns resources in a Sliver to the Researcher and their Slice, and then returns
a Sliver Credential, that the Researcher can use to control the Sliver. Currently resources are assigned
per the Ticket, with a starting time of now.

Note that Slivers in ProtoGENI are first class objects; every sliver is controlled via a credential that
is created when the sliver is instantiated. RedeemTicket() and InstantiateSlice() both return a credential
to the caller.

While an aggregate is defined for a collection of components, it is not clear what a slice of an
aggregate looks like: is it considered an 'aggregate sliver', or several slivers?

One of the key reasons this matters is in regards to what one gets back from a CreateSliver?() call
on an aggregate - is it a credential for a single sliver? Is it a set of credentials for all slivers that got
created by this call?

The answer we came up with is this: It returns a "handle" on the set of slivers created by the call. If
one wants to operate on, or delegate rights to, all of these slivers at once, one can simply use the
credential returned by the CreateSliver?() call. However, we will add a new call to the API for an
aggregate component manager that, given such a handle, returns credentials for all of the slivers inside.

In this way, the simpleness of the common case (operating on all slivers we got in the aggregate) is
preserved, but users can also "look inside" of the slivers they have been given from an aggregate, in a
hierarchy that exactly mirrors the original aggregate.

8.5 Component Programming

The ProtoGENI control framework allows a Researcher to login to an assigned sliver (component),
load code, and then boot it, etc. This is done via the Sliver Interface; see Section 4.13.

8.6 Disconnected Operation of Components

In a GENI suite, some of the components (such as wireless servers) will require “disconnected
operation”, where they are controlled and polled in the short periods of time that they are connected to
the suite.

 (Note yet defined in ProtoGENI.)

8.7 Disconnected Operation of Researchers

In a GENI suite, some researchers, will connect to the GENI suite to setup an experiment, e.g., by
reserving resources for use at a later time, and then will disconnect until they are ready to execute the
experiment.

This is supported by the basic operations in ProtGENI.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 35 of 41

8.8 Resource to Resource Connections

When a researcher has been assigned resources from two (or more) aggregates that must be
connected together, the ProtoGENI control framework provides a way for the researcher to learn about
the connection points, request the connections, following the necessary sequence, and receive a
verification that the connection has been completed.

This follows the Emulab “virtual network” approach described in
http://www.cs.utah.edu/flux/papers/virt-usenix08-base.html .

For example, an RSpec can include a request for a link between two nodes, or a LAN between a set
of nodes. ProtoGENI supports independent control of these links and LANs, and even the individual
interfaces on nodes attached to the links.

To accomplish this, ProtoGENI treats these sub resources the same as slivers, creating credentials
that the caller can use to control them. In addition to the defined sliver operations in the API,
ProtoGENI will export additional APIs that are specific to these other resources.

8.9 Setup Verification

When a researcher has been assigned resources on GENI (or federated) aggregates for an
experiment, the control framework shall provide a way for the researcher to ask the aggregates to verify
the setup before it is time for the experiment to start.

 (Note yet defined in ProtoGENI.)

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 36 of 41

9 Experiment Execution in ProtoGENI Control Framework

9.1 Experiment and Sliver Control

When a Researcher, associated with a designated slice, has been assigned resources on aggregates
for an experiment, the ProtoGENI control framework provides a way for the researcher to control the
slivers in the aggregates using commands appropriate to the nature of the sliver. For example, start,
stop and reboot for a process running on a host. Or, connect, disconnect and loopback for a path in a
network. See Figure 8-2.

Step 3: To Component Interface URL of Aggregate, Researcher presents SliverCred and calls
StartSliver, or other appropriate command.

All of the available functions are detailed at:

http://www.protogeni.net/trac/protogeni/wiki/ComponentManagerAPI

9.2 Experiment Data Collection and Management

GENI will provide for experiment data collection and measurement, both locally within aggregates
(components) and globally in designated measurement services. It is expected that large data files will
be gathered by these services, and that they will need to be transferred to a software repository and/or
an experiment analysis service after an experiment.

To accomplish this, the control framework should provide the mechanism(s) to allow a researcher
to transfer large software records between components, software repositories, etc. For example, the
control framework could provide a file transfer service based on ftp.

(Not yet defined in ProtoGENI).

9.3 Forensic and Usage Data Collection and Management

Forensic and usage data from a GENI suite has many uses, including:

 Finding anomalies that indicate errors, faults, malicious activity, etc.

 Allowing help desk functions to be provided to researchers.

 Permitting proper administration and management of suite resources.

 Permitting financial accounting where necessary.

The control framework should provide a structure for collecting and managing forensic and usage
data, including formats and log structures.

(Not yet defined in ProtoGENI.)

9.4 Experiment Status Events and Notifications

In a GENI suite:

 The control framework shall provide a structure for defining experiment status events,
triggered by the use of resources in an aggregate or component, and ways to delivery
notifications of these events to principals or entities.

 It shall be possible for these events to be defined by a researcher and/or by the aggregate or
component administrator or operator.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 37 of 41

For example, a network gateway may indicate that the following event has occurred: “traffic
outbound to the Internet from slice 62 has exceeded it pre-determined threshold”.

 (Not yet defined in ProtoGENI.)

Question: What about the Emulab per-node watchdog process, with status message to Emulab
central? See “monitor health” section in http://www.cs.utah.edu/flux/papers/portal-worlds04-base.html
.

9.5 Experiment Status Commands and Responses

In a GENI suite:

 The control framework shall provide a structure for defining experiment status commands,
and ways to deliver these commands to an aggregate or component, that responds with a
change in the use of resources within the aggregate or component.

 It shall be possible for the responses to be defined by the aggregate or component
administrator or operator, or by the researcher.

For example, a command may be sent to an aggregate “to shutdown all slivers in this aggregate
associated with slice 62”.

In ProtoGENI, a rudimentary form of emergency shutdown has been implemented. Anyone with a
slice credential can contact the Slice Authority for the slice, and ask it to do the shutdown operation.:
 int Shutdown(credential, uuid);

where credential is the credential returned by the GetCredential() call above, uuid is the uuid of the
slice to be shutdown.

Currently, the Slice Authority calls the Clearinghouse, since only it knows about each Aggregate
Manager. Since the Clearinghouse must contact each Aggregate Manager to tell it to shutdown the
slice, this call will return immediately. There is currently no facility to find out if/when the shutdown
has completed.

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 38 of 41

10 Federation in ProtoGENI Control Framework

10.1 Federated Aggregates and Components

A ProtoGENI control framework provides for the inclusion of a variety of federated aggregates
(and their included components) to provide a wide range of resources to the Researchers.

Starting with a ProtoGENI cluster node and the Utah Emulab cluster node, it will add federated
Emulab nodes at Carnegie Melon and Kentucky and thus realize a unified ProtoGENI suite.

Furthermore, the Utah Emulab cluster node already includes federated access to two PlanetLab
Central (PLC) installations at Princeton and at Utah. This federation was done by implementing an
Emulab to PlanetLab portal; see http://www.cs.utah.edu/flux/papers/portal-worlds04-base.html for
more details.

10.2 Federated Suites

The control framework should provide for the federation of a GENI suite with other suites, where
each suite has its own complete set of entities, but is independently owned and operated.

 (Not yet defined in ProtoGENI.)

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 39 of 41

11 ProtoGENI Cluster C Spiral 1 Implementation

11.1 Start of Spiral 1

At the beginning of Spiral 1, the ProtoGENI Cluster C implementation includes a ProtoGENI
cluster node and the Utah Emulab cluster node. See Figure 11-1.

Note that the Utah Emulab cluster node already includes federated access to two PlanetLab Central
(PLC) installations at Princeton and at Utah. This federation was done by implementing an Emulab to
PlanetLab portal; see http://www.cs.utah.edu/flux/papers/portal-worlds04-base.html for more details.

Figure 11-1. Start of ProtoGENI Cluster C Spiral 1 Implementation.

Next, it will add federated access to:

 A programmable edge cluster, HomeNet?, and a wireless emulator at Carnegie Mellon
University

 Netlab at the University of Kentucky

 Netlab at Georgia Tech

 Schooner, part of WAIL at the University of Wisconsin-Madison

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 40 of 41

11.2 Completion of Spiral 1

Eventually, the following Cluster C projects will be integrated into the ProtoGENI implementation;
see Figure 11-2.

Figure 11-2. ProtoGENI Cluster C Implementation.

University of Kentucky: Instrumentation Tools

Tools for collecting and displaying measurements of hosts, such as traffic volumes and host load
characteristics. Integration Plans

University of Wisconsin-Madison: Measurement System

Prototype of the GIMS measurement framework. A system for the capture and storage of packets,
using capture devices separate from GENI components (eg. by employing optical splitters). An
important part of this will be providing controlled access to measurements collected, possibly with
anonymization. Integration Plans

Georgia Tech: Virtual Tunnels

Georgia Tech is a participant in the VINI project, which has as one of its goals improved network
virtualization, allowing the creation of tunnels between sliced hosts, and allowing slivers more control
over routing, etc. between their interfaces. Integration Plans

Georgia Tech: BGPMux

ProtoGENI CF Overview 022709 GENI-SE-CF-ProtoGENIOver-01.4.doc February 27, 2009

 Page 41 of 41

The BGP multiplexer can be used to share BGP feeds among researchers, for the purpose of
advertising prefixes (a possible opt-in end user strategy) or getting vantage points into the global BGP
topology. Integration Plans

Carnegie Mellon University: HomeNet?

HomeNet? will be a deployment of components throughout Pittsburgh on residential broadband
(Cable and DSL), and will be equipped with 802.11 interfaces to create an urban wireless mesh.
Integration Plans

Carnegie Mellon University: WirelessEmulator?

CMU's wireless emulator allows for the creation of controlled, repeatable wireless channel
condition, under which real wireless hardware and protocols can be tested. Integration Plans

University of Massachusetts-Lowell: Programmable Edge Node

This project will produce a component that is sliced in a lightweight manner using the OpenVZ
mechanism in the Linux kernel, and provides a highly-scalable set of virtual interfaces using a network
processor. Integration Plans

