
GENI – UMLPEN r0.1

 1

The Integration of a Programmable Edge Node to ProtoGENI Control
Framework

University of Massachusetts Lowell
September 2009

Abstract

A Programmable Edge Node is a multicore based virtualization platform for GENI users to
deploy experiments. It consists of general purpose processors on the host and network processors
at the NIC level, isolating the experiments and measurements. We have developed such a
prototype and integrated with one of the GENI control frameworks, ProtoGENI. ProtoGENI is
primarily built on top of Emulab and being augmented to support GENI federation. In this
document, we introduce the schemes how our PEN prototype is integrated to ProtoGENI control
framework. We present the hardware architecture of our ProtoGENI aggregate established at
UMass Lowell. We describe the software modules, including the component manager, developed
for integrating PENs into ProtoGENI.

1. Introduction

GENI, a national-scale network infrastructure, is being designed and prototyped to support
virtualized network experimentation. The users of GENI request resources from resources
providers to deploy their experiments. As the experiments scale in size and diversity, GENI needs
to rely on control frameworks to facilitate resource management, discovery and optimization.
ProtoGENI is one of the control frameworks proposed at GENI Spiral One stage, and it is being
actively improved to address the challenging issues in the federation process.

As one of the GENI Spiral One teams, we have developed a Programmable Edge Node prototype
to support virtual experiments and provide modest isolation of experiments and measurement.
Our PEN platform consists of both general-purpose and application-specific multicore processors
for different workloads in the virtual network environment. Our goal is to integrate the PEN into
ProtoGENI control framework such that users can discover the resources available at the PEN
and request them for the users’ experiments through a common interface.

ProtoGENI control framework provides a common interface for users to request resources. The
current version of the interface is based on Flash technology. The graphical interface displays the
available resources at all ProtoGENI aggregates. A user can drag and drop the node icons (e.g.
computers and switches) to build a virtual network to be studied. Then the user can request the
allocation of these nodes, and once granted, they can access the nodes and deploy their
experiments.

The resource discovery and allocation is done by the ProtoGENI control framework through
databases and RSpec of resources. Since our PEN is a new type of resource that supports dynamic
virtual containers and virtual NICs, it needs a new RSpec definition and an unconventional
resource management scheme. This is where we devote our effort to integrate PENs to
ProtoGENI.

This document describes how the PEN prototype is integrated with ProtoGENI control
framework. In Section 2, we describe the hardware architecture of the ProtoGENI aggregate

GENI – UMLPEN r0.1

 2

established at UMass Lowell. Our aggregate has currently one PEN prototype available for users’
experiments. We also present the details of the software components we develop for this
integration in Section 3. Among the software modules, we provide details of the “component
manager” which communicates with the ProtoGENI clearinghouse, interacts with the Flash
Interface, and most importantly performs the actual resource allocation and release. We conclude
the document in Section 4 and point users to further readings in Section 5.

2. ProtoGENI Aggregate Architecture

In the ProtoGENI environment there are two major elements which comprise the architecture –
the Clearinghouse and the Component Manager (CM). The Clearinghouse is a central server
which keeps track of each CM and its associated credentials. Every site in the ProtoGENI project
runs a CM which is responsible for managing local resources. When a user creates an experiment,
the Clearinghouse is responsible for gathering resource information from each CM and reporting
the resources which are available to the user. When the user creates a topology using the retrieved
resources, the Clearinghouse sends the relevant topological information to each CM. The CMs, in
turn, allocate their resources to match the requested layout.

Figure 1: Architecture of ProtoGENI Aggregate at UMass Lowell

GENI – UMLPEN r0.1

 3

Figure 1 illustrates the hardware architecture of the ProtoGENI aggregate established in the
CANS lab at UMass Lowell. The UML ProtoGENI site posses a boss node and an ops node. The
ops node serves as the file manager. The boss node is responsible for the database and the CM.
Within the UML CM modifications have been made to incorporate virtual nodes hosted on the
PEN node. With the exception of the PEN node, the UML ProtoGENI follows the architectural
specifications of the ProtoGENI project. Overall, such hardware setup is mandated by Emulab
configuration. More detailed information is available at www.protogeni.net and www.emulab.net .

3. Software Modules for Integration

We have developed software modules to integrate the PEN to ProtoGENI control framework.
ProtoGENI extensively use databases and scripts to track the resources and perform resource
management operations. Our PEN is a new, special resource in terms of the virtual container
creation and virtual NIC instantiation. Therefore, we devote our effort in developing RSpec and
scripts customized for PEN-type resources. We then plug in our scripts into the ProtoGENI
control software.

De-Allocation Phase

Allocation Phase

DiscoverResources()
Flash Interface

Requests Resource
Information

Flash Interface
Requests

Resources

GetTicket()RedeemTicket()
Request

PEN
Node?

StartSliver() Allocation
Complete

Flash Interface
Requests

Delete Sliver
DeleteSliver()

Yes

No

De-Allocation
Complete

Custom Scripts
for PEN

Integration
PEN

Node?

Yes

No

Figure 2: Software Flow Chart

Figure 2 shows the flow chart of the ProtoGENI software. The software is executed from the
Flash Interface upon users’ selection and commanding. The software consists of two major
phases: allocation and de-allocation of resources. Our customization happens in both phases and

GENI – UMLPEN r0.1

 4

we will explain it in Section 3.2. For resource management, ProtoGENI leverages databases to
define resources and track their usage. We next describe the database entries we add for PEN-
type nodes.

3.1 Database:

A virtual node hosted on PEN is described in the Emulab database, tbdb, very similar to a regular
node. A new node type was created, pcpen, which is used to describe each virtual node. The class
of pcpen is pc and shares all of the same characteristics. The node type pcpen is used for
differentiating PEN nodes from regular nodes in the custom PEN scripts. For a node to be
available, it is manually inserted into the nodes table with the following features:

• node_id: pen*
• type: pcpen
• phys_node_id: pen*
• def_boot_osid: 10000
• priority: 1
• eventstate: PXEWAIT

All other values in the nodes table will be NULL, a timestamp, or the same as a regular PC. The
interfaces of the virtual node are described in the interfaces table in the same manner as a regular
network interface. One entry must be made for every desired port on the virtual machine – so if a
machine can support a maximum of five ports, five ports must be described and associated with
the virtual machine within the interfaces table.

These database entries will allow for a virtual node to be assigned by the Flash Interface. These
modifications only trick the component manager into passing the information. Now that the
component manager can acknowledge and pass the information regarding the virtual node,
modifications are made to the component manager so that it accesses custom scripts in the case of
a request for a virtual node on PEN.

3.2 Customized Scripts:

When the user accesses the Flash Interface, it sends a resource request to the UML component
manager. The component manager then calls the function DiscoverResources and returns the
results. The Flash Interface now has a list of the resources available at the UML site. The user
now selects a virtual node hosted on PEN and clicks ‘Create Slivers’. The request is sent to the
UML component manager which enters the GetTicket function, followed by the RedeemTicket
function.

Within the RedeemTicket function, the first custom script, pcpen_setup, is called. Pcpen_setup is
a PERL script which collects information about the node to be created (number of NICs, PID,
EID) and passes it on to the PEN host. The pcpen_setup script uses the SSH protocol to login to
the PEN host and call the second custom script, ve_setup. This script is responsible for creating
the machine as described by pcpen_setup. It is responsible for issuing the OpenVZ commands
that activate the container. Once the container is live, ve_setup will use the NFM to create the
appropriate number of virtual NICs and allocate them to physical ports. If every step completes
successfully, ve_setup returns success, pcpen_setup in turn returns success, and the allocation
phase completes.

GENI – UMLPEN r0.1

 5

Once the slivers have been created, the user will click the ‘Boot Slivers’ button on the Flash
Interface in order to activate the allocated machines. In the instance of the virtual PEN node, the
machine is already live, so a condition has been added to the StartSliver function in the
component manager. This condition allows for the StartSliver function to bypass the need to
activate the already active virtual PEN node. The experiment is now live and available to the user.

Upon completing the desired experiment, the user clicks the ‘Delete Slivers’ button on the Flash
Interface. This command will activate the DeleteSliver function in the UML component manager.
The DeleteSliver function will cycle through all of the allocated nodes, commanding each to
reboot, temporarily moving it to the ‘reserved’ table in the database. In the instance of the PEN
node, rebooting and moving to the ‘reserved’ table is unnecessary. Instead, the DeleteSliver
function will call the script pcpen_cancel to stop the virtual node.

Much like pcpen_setup, pcpen_cancel uses the SSH protocol to login to the PEN host to activate
OpenVZ commands. Pcpen_cancel collects which virtual nodes must be stopped and passes the
information to the ve_cancel script. This script first uses the NFM to close all virtual ports and
de-allocate them from the physical ports. Once the virtual ports have been removed, the OpenVZ
commands ‘stop’ and ‘destroy’ are called respectively. If each step completes successfully,
ve_cancel returns success and then pcpen_cancel returns success. Once these steps complete
successfully the script pcpen_delete is called, which frees the virtual node entry from the
‘reserved’ table. After this script completes, the component manager completes the natural
sequence of DeleteSliver, and the physical nodes reboot.

4. Conclusion

We have successfully integrated a PEN prototype to ProtoGENI control framework through the
customized software modules. The prototype is in operation in the CANS lab at UMass Lowell.
We plan to perform addition testing of the prototype and frequently update our software with new
ProtoGENI software releases. We welcome trial usage and comments on our PEN-type nodes,
and will provide support to third party development.

5. Further Readings

For information about the UMLPEN project, please visit
http://cans.uml.edu/index.php?Research.PEN

For information about ProtoGENI, please visit http://www.protogeni.net/ .

For information about the design of the PEN prototype, please refer to the design document titled
“The Design of a Programmable Edge Node for GENI” available at the project website
http://cans.uml.edu/index.php?n=Research.PEN .

For information about the usage of the PEN prototype, please refer to the usage document titled
“The Usage of a PEN in ProtoGENI” available at the project website
http://cans.uml.edu/index.php?n=Research.PEN .

