
PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 1 of 40

G E N I

Global Environment for Network Innovations

PlanetLab GENI Control Framework
Overview

Document ID: GENI-SE-CF-PLGO-01.2

January 14, 2009

Prepared by:

The GENI Project Office

BBN Technologies

10 Moulton Street

Cambridge, MA 02138 USA

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 2 of 40

Issued under NSF Cooperative Agreement CNS-0737890

TABLE OF CONTENTS

1 DOCUMENT SCOPE .. 4

1.1 PURPOSE OF THIS DOCUMENT ... 4

1.2 CONTEXT FOR THIS DOCUMENT .. 4

1.3 RELATED DOCUMENTS ... 5

1.3.1 National Science Foundation (NSF) Documents ... 5

1.3.2 GENI Documents .. 5

1.3.3 Standards Documents .. 5

1.3.4 Other Documents ... 5

1.4 DOCUMENT REVISION HISTORY .. 6

2 GENI SYSTEM OVERVIEW .. 8

2.1 MAJOR ENTITIES AND THEIR RELATIONSHIPS ... 8

2.2 FEDERATED SUITES ... 9

2.3 SLICES .. 10

3 GENI CONTROL FRAMEWORK OVERVIEW .. 11

3.1 DEFINITION ... 11

3.2 REQUIREMENTS .. 11

3.3 IMPLEMENTATION APPROACH FOR SPIRAL 1 PROTOTYPES ... 11

4 PLANETLAB GENI CONTROL FRAMEWORK STRUCTURE .. 13

4.1 REGISTRIES ... 15

4.2 AGGREGATES AND COMPONENTS ... 17

4.3 PRINCIPALS ... 18

4.4 SERVICES .. 19

4.5 SLICES .. 20

4.6 MESSAGE FLOWS .. 20

4.7 REGISTRY, SLICE AND MANAGEMENT INTERFACES .. 21

4.8 SLIVER INTERFACES .. 21

4.9 PUBLIC KEY INFRASTRUCTURE (PKI) AND CERTIFICATES .. 21

4.10 GLOBAL IDENTIFIERS (GIDS) .. 23

4.11 CREDENTIALS ... 23

4.12 AUTHENTICATION ... 24

4.13 AUTHORIZATION ... 24

4.14 TICKETS .. 24

4.15 RESOURCE SPECIFICATION (RSPEC) .. 25

5 PRINCIPALS IN THE PLANETLAB GENI CONTROL FRAMEWORK 26

5.1 IDENTIFICATION .. 26

5.2 REGISTRATION .. 26

5.3 AUTHENTICATION ... 26

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 3 of 40

6 AGGREGATES AND COMPONENTS IN PLANETLAB GENI CONTROL FRAMEWORK .. 27

6.1 IDENTIFICATION .. 27

6.2 REGISTRATION .. 27

6.3 RESOURCE ALLOCATION ... 27

7 SLICES IN PLANETLAB GENI CONTROL FRAMEWORK .. 28

7.1 IDENTIFICATION .. 28

7.2 REGISTRATION .. 28

7.3 CREDENTIAL ISSUE ... 28

8 EXPERIMENT SETUP IN PLANETLAB GENI CONTROL FRAMEWORK 29

8.1 RESOURCE AND TOPOLOGY DISCOVERY ... 29

8.2 RESOURCE SHARING ... 29

8.3 RESOURCE AUTHORIZATION AND POLICY IMPLEMENTATION ... 30

8.4 RESOURCE ASSIGNMENT ... 30

8.5 COMPONENT PROGRAMMING .. 31

8.6 DISCONNECTED OPERATION OF COMPONENTS .. 32

8.7 RESOURCE TO RESOURCE CONNECTIONS .. 32

8.8 SETUP VERIFICATION .. 32

9 EXPERIMENT EXECUTION IN PLANETLAB GENI CONTROL FRAMEWORK 33

9.1 EXPERIMENT CONTROL ... 33

9.2 EXPERIMENT DATA COLLECTION AND MANAGEMENT ... 34

9.3 FORENSIC AND USAGE DATA COLLECTION AND MANAGEMENT ... 34

9.4 EXPERIMENT STATUS MONITORING .. 34

9.5 EXPERIMENT STATUS COMMANDS .. 35

10 FEDERATION IN PLANETLAB GENI CONTROL FRAMEWORK ... 36

10.1 FEDERATED AGGREGATES AND COMPONENTS.. 36

10.2 FEDERATED SUITES ... 38

11 PLANETLAB GENI CLUSTER B SPIRAL 1 IMPLEMENTATION .. 39

11.1 START OF SPIRAL 1 ... 39

11.2 COMPLETION OF SPIRAL 1 ... 40

2

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 4 of 40

1 Document Scope

This section describes this document’s purpose, its context within the overall GENI document tree,
the set of related documents, and this document’s revision history.

1.1 Purpose of this Document

This document provides an overview of the PlanetLab GENI control framework being implemented
for Spiral 1, for use in Cluster B. It is a DRAFT, to be used for discussion in the GENI Facility Control
Framework working group. (Note: A review of this document by the PlanetLab team is underway, but
has not yet been completed.) It provides a description of the PlanetLab GENI control framework
structure, a summary of how it meets the requirements as presented in the “GENI Control Framework
Requirements”, and a view of its implementation at the start and the finish of Spiral 1.

Some of the material in this document is taken from the GENI System Requirements document.

Some of the material in this document is taken from the GENI System Overview document.

Some of the material in this document is taken from the GENI Control Framework Requirements
document.

Some of the material is taken from a draft “Slice-Based Facility Architecture (SFA)” document,
Draft v1.02, November 3, 2008, by Larry Peterson (editor), Soner Sevinc, Jay Lepreau, Robert Ricci,
John Wroclawski, Ted Faber, Stephen Schwab and Scott Baker.

Some of the material is taken from a draft “Planet Lab Implementation of the Slice-Based Facility
Architecture,” Draft v0.01, November 7, 2008, by Larry Peterson, Soner Sevinc and Scott Baker

Some of the material is taken from a draft “Geniwrapper Design Overview” by Scott Baker.

1.2 Context for this Document

Figure 1-1. below shows the context for this document within GENI’s overall document tree.

Figure 1-1. This Document within the GENI Document Tree.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 5 of 40

1.3 Related Documents

The following documents of exact date listed are related to this document, and provide background
information, requirements, etc., that are important for this document.

1.3.1 National Science Foundation (NSF) Documents

Document ID Document Title and Issue Date

N / A

1.3.2 GENI Documents

Document ID Document Title and Issue Date

GENI-SE-SY-RQ-01.4 GENI System Requirements, September 18, 2008

http://www.geni.net/docs/GENI-SE-SY-RQ-01.7.pdf

GENI-SE-SY-SO-01.5 GENI System Overview, September 19, 2008,
http://www.geni.net/docs/GENISysOvrvw092908.pdf

GENI-SE-CF-RQ-01.x GENI Control Framework Requirements, November 21, 2008,

http://geni.bbn.com:8080/docushare/dsweb/Services/Document-1234

1.3.3 Standards Documents

Document ID Document Title and Issue Date

N / A

1.3.4 Other Documents

Document ID Document Title and Issue Date

GDD 06-10 "Towards Operational Security for GENI," by Jim Basney, Roy Campbell, Himanshu
Khurana, Von Welch, GENI Design Document 06-10, July 2006.

http://www.geni.net/GDD/GDD-06-10.pdf

GDD 06-23 "GENI Facility Security," by Thomas Anderson and Michael Reiter, GENI Design
Document 06-23, Distributed Services Working Group, September 2006.
http://www.geni.net/GDD/GDD-06-23.pdf

N/A "GMC Specifications," edited by Ted Faber, Facility Architecture Working Group,
September 2006.

http://www.geni.net/wsdl.php

GDD 06-24 "GENI Distributed Services," by Thomas Anderson and Amin Vahdat, GENI Design
Document 06-24, Distributed Services Working Group, November 2006.
http://www.geni.net/GDD/GDD-06-24.pdf

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 6 of 40

GDD 06-38 "GENI Engineering Guidelines," edited by Ted Faber, GENI Design Document 06-38,
Facility Architecture Working Group, December 2006.

http://www.geni.net/GDD/GDD-06-38.pdf

GDD 06-42 "Using the Component and Aggregate Abstractions in the GENI Architecture," by
John Wroclawski, GENI Design Document 06-42, Facility Architecture Working
Group, December 2006.

http://www.geni.net/GDD/GDD-06-42.pdf

N/A “Slice Based Facility Architecture,” Draft v1.02, November 3, 2008, by Larry Peterson,
et.al.

http://svn.planet-lab.org/attachment/wiki/GeniWrapper/sfa.pdf

N/A “Planet Lab Implementation of the Slice-Based Facility Architecture,” Draft v0.01,
November 7, 2008, by Larry Peterson, Soner Sevinc and Scott Baker

http://www.cs.princeton.edu/~llp/geniwrapper.pdf

N/A “geniwrapper” and “Geniwrapper Design Overview” by Scott Baker

http://svn.planet-lab.org/wiki/GeniWrapper and

http://svn.planet-lab.org/wiki/OverviewLinkGoesHere

N/A “Decentralized Trust Management,” 1996, by Matt Blaze, et.al, AT&T Research.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.6276

N/A “Compliance Checking in the PolicyMaker Trust Management System,” 1998, by Matt
Blaze, et.al, AT&T Research.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2525

N/A “The Role of Trust Management in Distributed Systems Security,” 1999, by Matt
Blaze, et.al, AT&T Research.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.7726

1.4 Document Revision History

The following table provides the revision history for this document, summarizing the date at which
it was revised, who revised it, and a brief summary of the changes. This list is maintained in reverse
chronological order so the newest revision comes first in the list.

Revision Date Revised By Summary of Changes

01.1 12/15/08 H. Mussman Completed draft, utilizing PlanetLab material from Larry
Peterson and Scott Baker, and following structure from
Control Framework Requirements document.

01.2 1/14/09 H. Mussman Updated with small changes.

01.3

01.4

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 7 of 40

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 8 of 40

2 GENI System Overview

2.1 Major Entities and their Relationships

Figure 2-1 presents a block diagram of the GENI system covering the major entities within the
overall system. Optional (but desirable) parts are shown “grayed-out.” See the GENI System
Overview document at http://www.geni.net/docs/GENISysOvrvw092908.pdf for more details.

Figure 2-1. GENI System Diagram.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 9 of 40

2.2 Federated Suites

Figure 2-2 provides a system diagram illustrating federation between one GENI suite and another.
As a hypothetical example, it depicts federation between a US-based GENI suite and a compatible suite
in the European Union (EU).

EU
Comp
EU-A

EU
Admin
and
Ops
Org

EU
Clearinghouse
(federated suite)

Trust

Trust

DOE Aggr Z
(federated aggr)

Comp Z

GENI Admin and Ops Org

GENI Aggr A

Operator

Admin

Ops
and
Mgmt
Tools

Admin
and
Account
Tools

Host
A1

Host
Ax

GENI Aggr B

Comp B

Measurement Plane

Control Plane

Ops and Mgmt Plane

Experiment Plane

EU
Comp
EU-Z

Research
Org EU-A

Researcher

Research
Org EU-B

Slice
Admin

PI

Local
Principal
Registry

Exper
Control
Tools

Link

Link

Route

Route

Measurement Plane

Control Plane

Ops and Mgmt Plane

Experiment Plane

GENI Clearinghouse

Comp
Registry

Principal
Registry

Ticket:
Store
Query

Principal:
Register
Authen
Query

Slice
Registry

Ticket
Log

Software
Reposit

Soft Mod:
Store
Get
Query

Aggr Mgr
with Ops Portal

Admin Oper

Aggr Mgr
with Ops Portal

Admin Oper

Research
Org A

Researcher
Exper
Control
Tools

Research
Org B

Slice
Admin

PI

Local
Principal
Registry

Aggr Mgr
with Ops Portal

Admin Oper

Help
Desk
Tools

Slice:
Register
Cred Issue
and/or
Tkt Broker
Query

Comp:
Register
Discover
Query

Figure 2-2. System Diagram with Federated Infrastructure Suites.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 10 of 40

2.3 Slices

Figure 2-3 shows two researchers from different organizations managing their two experiments in
two corresponding slices. Each slice spans an interconnected set of slivers on multiple aggregates
and/or components in diverse locations. Each researcher remotely discovers, reserves, configures,
programs, debugs, operates, manages, and teardowns the “slivers” that are required for their
experiment. Note that the clearinghouse keeps track of these slices for troubleshooting or emergency
shutdown.

Figure 2-3. Two GENI Slices.

An aggregate manager a) interacting with the researcher (or her proxies) via the control plane and
b) configuring the devices over internal interfaces establishes Slivers. Components may be virtualized,
and can thus provide resources for multiple experiments at the same time, but keep the experiments
isolated from one another. In addition, each slice requires its own set of experiment support services.
Furthermore, as shown in Slice B, “opt-in” users may join the experiment running in a slice, and thus be
associated with that slice.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 11 of 40

3 GENI Control Framework Overview

3.1 Definition

The GENI control framework is defined in the GENI Control Framework Requirements document
at http://geni.bbn.com:8080/docushare/dsweb/Services/Document-1234 .

It includes these entities:

 A “clearinghouse” consisting of principal, component and slice registries, plus related
services.

 Services associated with each aggregate.

 Principals typically using tools, and acting as clients.

The GENI control framework defines:

 Interfaces between all entities.

 Planes for transporting messages between all entities.

 Message types, including basic protocols and required functions.

 Message flows necessary to realize key experiment scenarios.

3.2 Requirements

The GENI control framework requirements are presented in the GENI Control Framework
Requirements document at http://geni.bbn.com:8080/docushare/dsweb/Services/Document-1234 .

3.3 Implementation Approach for Spiral 1 Prototypes

Five control framework implementations are being developed for Spiral 1 prototypes, based on the
following systems and software packages:

• PlanetLab, a system that allows researchers to conduct experiments on hosts located at various
sites; see http://svn.planet-lab.org/wiki/GeniWrapper and http://groups.geni.net/geni/wiki/PlanetLab .

• ProtoGENI, which is based Emulab, a system that allows researchers to conduct experiments
on hosts and other equipment located in various sites; see https://www.ProtoGENI.net/trac/ProtoGENI
and http://groups.geni.net/geni/wiki/ProtoGENI .

• ORCA resource allocation software; see http://nicl.cod.cs.duke.edu/orca/ and
http://groups.geni.net/geni/wiki/ORCABEN .

• ORBIT, a system that allows researchers to conduct experiments on a federated arrangement of
wireless networks, utilizing peridically disconnected resources; see http://www.orbit-
lab.org/wiki/WikiStart and http://groups.geni.net/geni/wiki/ORBIT .

• TIED, a system that allows researchers to conduct experiments on a federated arrangement of
hosts located in various sites; see http://seer.isi.deterlab.net/ and
http://groups.geni.net/geni/wiki/TIED .

Each control framework will be used for one cluster of projects, and typically provides the
clearinghouse and a reference implementation of the aggregate manager for its cluster. Researchers in a
given cluster will typically be able to conduct experiments only on the prototype aggregates and
components within that cluster.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 12 of 40

At the completion of Spiral 1, these control framework prototypes will be compared and evaluated.

For Spiral 2 prototyping during the following year, improvements and/or consolidations are
expected. Useful features in one control framework may be adopted by another. A particular project
may choose to move from one control framework to another. And, it is also possible that two (or more)
control frameworks may merge, or possibly just federate.

Sections 4 though 11 present an overview of the PlanetLab GENI-based control framework
implementation.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 13 of 40

4 PlanetLab GENI Control Framework Structure

A block diagram of the basic PlanetLab GENI control framework structure is shown in Figure 4-1,
which includes:

 Principal, Slice and Component Registries, which are the key entities in the Clearinghouse,
and which include, respectively, Principal, Slice and Component Registry Services, plus
Principal, Slice and Management Authority Services.

 One or more Aggregates which include Components.

 Principals, such as Administrators, PIs, Operators, and Researchers.

 One or more Slice Managers which are used by the Researchers to setup and manage slices.

Figure 4-1. PlanetLab GENI Control Framework Structure.

The PlanetLab GENI control framework structure is based on the “Slice-based Facility
Architecture” (SFA) at http://svn.planet-lab.org/attachment/wiki/GeniWrapper/sfa.pdf . Note that the
SFA is based on earlier GENI efforts, including: "GMC Specifications," "GENI Distributed Services,"
and "GENI Engineering Guidelines."

This control framework structure is described in the “Planet Lab Implementation of the Slice-Based
Facility Architecture,” at http://www.cs.princeton.edu/~llp/geniwrapper.pdf . The current
implementation starts with PlanetLab Central and adds the geniwrapper software module (utility and
PLC classes) to provide the following entities shown in Figure 4-1:

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 14 of 40

 The PLC Registry that realizes the Principal, Slice and Component Registries and their
included services.

 The PLC Aggregate Manager.

 The PLC Slice Manager.

Furthermore, the geniwrapper software module (utility and component classes) is utilized to build:

 Each Component Manager

This current design of the geniwrapper software module is summarized in http://svn.planet-
lab.org/wiki/GeniWrapper and http://svn.planet-lab.org/wiki/OverviewLinkGoesHere .

The geniwrapper module is distributed as part of the MyPLC software package, and is
independently available at http://svn.planet-lab.org.

Note that the geniwrapper module can be accessed in isolation, e.g., to provide a starting point
for building a stand-alone AM or CM.

The geniwrapper module defines the following sets of classes:

 Utility classes that implement GIDs, credentials, and tickets, as well as an underlying
secure remote invocation mechanism. These classes are contained in the /util directory
of the module.

 PLC classes that implement the registry, slice, and management interfaces exported by the
Aggregate Manager (AM) and Registry (R) co-located with PLC. These classes are
contained in the /plc directory of the module.

 Component classes that implement the slice and management interfaces exported by the
Component Manger (CM) co-located with the node manager of each node. These classes
are contained in the /component directory of the module.

The module also includes a command-line client program can be used to exercise the AM, CM, and
Registry servers. The command-line client is contained in the /cmdline directory of the module.

Two files, geniserver.py and geniclient.py implement a basic Geni server and client.

Geniserver forms the basis of any server that exports a Geni interface. Examples include the PLC
and Component wrappers. The Geniserver class itself does not export any useful API functions other
than a "noop" function that can be used to test the server interface. Descendant classes register
additional API functions by overriding the register_function() member of the geniserver object.

Geniserver provides a function, decode_authentication, that decodes credentials. Credentials are
supplied as the first parameter to many registry and slice interface API functions. This function converts
the credential string supplied by the user into a credential object, checks to see that the key the caller is
using to encrypt the SSL connection matches the public key in the caller GID of the credential, checks
to see that the credential allows the operation the caller is attempting to do, and finally verifies that the
parentage of the credential traces back to a trusted root.

Geniclient provides a variety of client-side stubs for invoking operations on GENI interfaces. These
stubs convert objects into strings that may be encoded by XMLRPC, call the associated XMLRPC
function, and convert the results back into objects. Use of the Geniclient class is optional, but it makes a
convenient mechanism to execute API calls.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 15 of 40

4.1 Registries

The PLC Registry realizes the Principal, Slice and Component Registries, which hold all of the
records plus associated services which are necessary for the operation of the PlanetLab GENI suite.

The PLC Registry exports a Registry Interface as defined in the SFA document, but it is
implemented on top of the PlanetLab database.

In the PLC Registry, each registry record is given by the 4-tuple (Name, GID, Type, Info), where:

 Name specifies the Human Readable Name (HRN) of the object

 GID is the GID of the object

 Type is user | sa | ma | slice | component

 Info is comprised of the following sub-fields:

 Pointer is a pointer to the record in the PL database

 pl_info is planetlab-specific info (when talking to client)

 geni_info = geni-specific info (when talking to client)

The pointer is interpreted depending on the type of the record. For example, if the type=="user",
then pointer is assumed to be a person_id that indexes into the persons table. A given HRN may have
more than one record, provided that the records are of different types. For example, planetlab.us.arizona
may have both an SA and a MA record, but cannot have two SA records.

Per the SFA, the basic functionality of a registry is to map HRNs into records. However, because of
the interactions between geniwrapper and PLC, the registry does more than act as a simple database.
The registry performs API calls on PLC that create slices, sites, users, etc., and as such may indirectly
cause slices to be instantiated on components, because components are also linked to PLC.

The mapping of GENI objects to PlanetLab objects is relatively straightforward:

slice = slice

user = person

component = node

sa = site

ma = site

The one part that is slightly counterintuitive is SA and MA, which both map to the PlanetLab site
object. In a unified registry (a registry that serves as both slice and component registry), these will map
to the same site record in the PLC database. However, there are two distinct GENI records, one for the
SA and one for the MA.

Per the SFA, each registered object has a Global Identifier (GID) that includes a UUID and the
object’s Public Key. The UUID is a random number, generated following X.667 (RFC4122), that is
guaranteed to be unique.

The PLC Registry includes two command-line interfaces.

The End-User CLI (not yet completed) allows users to walk and update the registry, as well as to
create and control slices. The main command -- sfi, for Slice-based Facility Interface -- hides details of
credentials, GID, and remote servers. The following outlines the sub-commands we plan to support:

 Walk and update the Registry

 Learn about Nodes and Slices

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 16 of 40

 Create and control slices

The Developer CLI is located in the cmdline directory and can be invoked by running genicli.py.
Specifying "genicli.py help" will display a list of available commands. Several examples of using the
CLI are presented in the form of shell scripts in the cmdline directory. These scripts demonstrate
creating slices, authorities, users, nodes, and getting tickets and redeeming tickets.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 17 of 40

4.2 Aggregates and Components

The basic PlanetLab GENI suite includes one aggregate, the PLC Aggregate, whose Aggregate
Manager is located in PLC. It is realized with the geniwrapper software module (utility and PLC
classes) that is built on top of PLC. See Figure 4.2

Many Components (nodes) are typically associated with the PLC Aggregate Manager. Each
includes a Component Manager that is realized with the geniwrapper software module (utility and
Component classes) combined with other component management processes.

Aggr Mgr PLC
Geniwrapper with Utility and

PLC classes

Slice Intfc (get Ticket)
Mgmt Intfc
CLI

Comp Rec

MgmtAuth Rec
ProtoGENI

Sliver Server

Sliver Intfc

Mgmt Auth Srvc
ProtoGENI

GID, PKI keys

Component 001

Comp Mgr
Mgr plus Geniwrapper with

Utility and Comp classes

Slice Intfc (redeem Ticket)
Mgmt Intfc
CLI

SSH keys

GID, PKI keys, Certs

GID, PKI keys, Certs

Registry PLC (Clearinghouse)
Geniwrapper with Utility and PLC classes

Principal Registry Services: Register, Authenticate, Query
Slice Registry Services: Register, Credential Issue, Query
Component Registry Services: Register, Query

Registry Intfc
CLI

PlanetLab Central (PLC)

Figure 4-2. The PLC Aggregate and its Components.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 18 of 40

The PLC Aggregate Manager exports the Slice Interface defined in the SFA document.

Since it is implemented on top of the PLCAPI, and as such, it can be used to create, terminate, and
control slices on a PlanetLab-wide basis. It can also be used to get a Ticket that can then be
subsequently redeemed at a CM running on any PlanetLab node managed by this instance of PLC.

Since it is built using the geniwrapper software modules, the PLC Aggregate Manager also exports
the End-User and Developer CLIs; see Section 4.1

Each Component Manager implements the Slice and (component) Management Interfaces as
defined in the SFA.

It includes functions for redeeming Tickets, starting/stopping/resetting/deleting slices, and
management such as rebooting the component. Currently, slice control operations invoked on a CM
are successful only if the slice was created using a ticket (as opposed to created by invoking
InstantitateSlice on the PLC aggregate).

Since it is built using the geniwrapper software modules, the Component Manager also exports the
End-User and Developer CLIs; see Section 4.1

Note that mainpulating tickets is split between the PLC wrapper in the Aggregate Manager and the
Component wrapper in the Component Manager. Specifically, the authoritative copy of planetlab state
is stored on PLC and only cached on the components. Thus, GetTicket?() is implemented by the PLC
wrapper in the Aggregate Manager, and RedeemTicket?() is implemented by the Component wrapper
in the Component Manager. Attempting to call GetTicket?() on a component will fail.

Note that additional aggregates (with associated components) can be defined; see one proposed
approach outlined in Section 10.2.

4.3 Principals

A PlanetLab GENI principal (user) can be:

 A principal (user) acting from a server utilizing a browser.

 A principal (user) acting from a server utilizing a set of helper tools, such as a Researcher
utilizing a local Slice Manager (Experiment Control Tools).

A principal in PlanetLab GENI has privileges to allow it to play one (or more than one) of the
following roles in the PlanetLab GENI suite:

 Principal administrators, who act for the PlanetLab GENI suite or a research organization,
and are responsible for principal records and the authentication of principals.

 Aggregate administrators, who act for the PlanetLab GENI suite or an owning organization,
and are responsible for aggregate records.

 Slice administrators, who act for the PlanetLab GENI suite or a research organization, and
are responsible for slice records.

 PIs, who act for a research organization, and are responsible for slice records, the
researchers assigned to a slice, and for managing slices, including all of their slivers.

 Operators, who act for the PlanetLab GENI suite or an owning organization, and are
responsible for operations and management functions within an aggregate (or component).

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 19 of 40

 Researchers, who utilize the PlanetLab GENI suite for running experiments, deploying
experimental services, etc.

4.4 Services

A Service can be deployed in the GENI suite to assist in the setup and running of experiments (or in
the setup and running of the GENI suite). The PlanetLab GENI suite utilizes a Slice Manager service
that provides many of the functions envisioned for a GENI Experiment Control service.

In the basic PlanetLab GENI suite shown in Figure 4-1, a basic (trivial) Slice Manager is to be
realized using PLC and the geniwrapper software module. A prototype implementation is in progress.
It will export the slice interface, and in turn, call the slice interface on the set of aggregates with which
this instance of PLC peers. Typically, the SM will call each peer AM and ask for the set of available
components (and subsequently display the union of these lists to users), and later, call the appropriate
AMs to instantiate a slice on the components managed by that AM. The SM will maintain a database of
all slices created by behalf of users, including a record of where those slices have been instantiated.
Researchers (users) interact with this slice manager to create and control their slices.

Researchers (users) may also utilize an alternative Slice Manager. The alternative slice manager
could be located in a centralized location, or it could be dedicated to one Researcher as shown in Figure
4-3.

Figure 4-3. PlanetLab GENI Structure with Dedicated Slice Manager.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 20 of 40

4.5 Slices

From a Researcher's perspective, a slice is an interconnected set of reserved resources, or slivers, on
heterogeneous substrate aggregates (components). Researchers can remotely discover, reserve,
configure, and program, debug, operate, manage, and teardown resources on these aggregates
(components) to setup, utilize and then teardown the slivers necessary to complete an experiment. See
Section 2.3.

From an Operator's perspective, slices are the primary abstraction for accounting and
accountability—resources are acquired and consumed by slices, and external program behavior is
traceable to a slice, respectively.

In the PlanetLab GENI suite, slices are registered in the PlanetLab database contained within PLC,
and (per the SFA) principals (users) are given privileges associated with a slice, such as PI or
Researcher.

4.6 Message Flows

The current approach to message flows in the PlanetLab GENI control framework is summarized
by:

 Principals that periodically connect and communicate with Registries, Aggregates,
Components and Slice Mangers via defined interfaces and APIs.

 In particular, Researchers periodically connect and communicate with Registries,
Aggregates, Components and Slice Mangers so that they can acquire the resources
necessary for them to setup and execute experiments. In these transactions, Aggregates
supply resources, and Researchers consume resources.

 Since the Aggregates are expected to be widely distributed, and connections are made over
an IP network that may be the open Internet, the message flows must be secure, and the
Principals must be properly authenticated.

In the basic PlanetLab GENI suite shown in Figure 4.1, users interact with the Slice Manager (using
either a GUI or a programmatic interface) to create and control their slices. The Slice Manager contacts
the registry to retrieve the necessary credentials, and then invokes the Slice Interface on the aggregate
to create and control the slice. As is the common case in PlanetLab, the aggregate (rather than end
users) interacts with the individual nodes. Note that the current implementation of PLC uses a private
interface to interact with the individual components (although the components also export the slice
interface to other clients).

In the PlanetLab GENI suite utilizing an alternative slice manager as shown in Figure 4-3, the Slice
Manager contacts the PlanetLab Registry to retrieve the necessary credentials. It then contacts the
PlanetLab Aggregate Manager to retrieve a ticket for each slice it wants to instantiate. The alternate
Slice Manager then directly contacts the PlanetLab nodes to redeem these tickets, and later, to control
the slices on those nodes. Because each node only caches slice-related state, the alternate slice manager
is responsible for ensuring that the slices it instantiates persist across node failures.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 21 of 40

4.7 Registry, Slice and Management Interfaces

In PlanetLab GENI, principals periodically connect and communicate with Registries, Aggregates,
Components and Slice Managers via Registry, Slice and Management Interfaces. Each uses a custom
API as defined in the SFA on top of a common “GENI” protocol.

Note that PlanetLab supports an extensive Management interface that goes well beyond anything
defined by the SFA. This is a private interface known only to PlanetLab operators. One can view the
SFA management interface as a small subset of this PlanetLab-specific O&M interface that is ommon
to all components participating in a federated slice-based facility.

The GENI protocol is based on XML-RPC. It is implemented primarily in the geniserver.py and
geniclient.py files located with the utility classes in the geniwrapper software module. Modifications to
the XML-RPC protocol include the following:

The transport mechanism uses HTTPS instead of HTTP.

HTTPS certificate verification is disabled so that custom GENI verification based on GID can be
done instead.

When an exception occurs on the server, verbose exception information is sent to the client, to
assist debugging efforts

Authentication of the client by the server is done by using Credentials/GIDs; see Section 4.12.

4.8 Sliver Interfaces

Once a Sliver has been created on a component, a Sliver Interface is sometimes provided on the
component to allow the Researcher to program, configure and operate a server within the underlying
component, here designated the Sliver Server. The Sliver Server may be a physical server, or a virtual
machine. The Sliver Server may represent a component (host) itself, or a part of the component, e.g., a
controller acting as a protocol engine.

Typically, a Researcher on their server connects with the Sliver Server via the Sliver Interface using
a Secure Shell (SSH) login. An SSH login provides for almost complete control of the Sliver Server
within the component, and it is important that that server by well isolated from other slices to prevent
security breaches.

Mutual authentication is required in an SSH login. PlanetLab GENI utilizes public and private key
pairs, where the public key is loaded into the Sliver Server, and both public and private keys are held in
the SSH client.

Question: How will this function provided in PlanetLab GENI?

4.9 Public Key Infrastructure (PKI) and Certificates

In PlanetLab GENI, per the SFA, a Public Key Infrastructure and x509 certificates are utilized to
cryptographically sign information, which can then be transferred and verified. One PKI covers all
PlanetLab GENI principals and entities. Per the SFA, the certificates are signed by various authorities
located within the Registry. In some cases, certificates are signed by a chain of authorities.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 22 of 40

Geniwrapper uses two crypto libraries: pyOpenSSL and M2Crypto to implement the necessary
crypto functionality. Ideally just one of these libraries would be used, but unfortunately each of these
libraries is independently lacking. The pyOpenSSL library is missing many necessary functions, and the
M2Crypto library has crashed inside of some of the functions. The design decision is to use
pyOpenSSL whenever possible as it seems more stable, and only use M2Crypto for those functions that
are not possible in pyOpenSSL.

Public-private key pairs are implemented by the Keypair class. A Keypair object may represent
both a public and private key pair, or it may represent only a public key (this usage is consistent with
OpenSSL).

The certificate class implements a general purpose X509 certificate, making use of the appropriate
pyOpenSSL or M2Crypto abstractions. It also adds several addition features, such as the ability to
maintain a chain of parent certificates, and storage of application-specific data.

Certificates include the ability to maintain a chain of parents. Each certificate includes a pointer to
it's parent certificate. When loaded from a file or a string, the parent chain will be automatically loaded.
When saving a certificate to a file or a string, the caller can choose whether to save the parent
certificates as well.

Example creation of a certificate:

 # create a key for an issuer

 issuerKey = Keypair(create=True)

 issuerSubject = "testissuer"

 # create a key for the certificate

 userKey = KeyPair?(create=True)

 # create the certificate, set the issuer, and sign it

 cert = Certificate(subject="test")

 cert.set_issuer(issuerKey, issuerSubject)

 cert.set_pubkey(userKey)

 cert.sign()

Verification examines a chain of certificates to ensure that each parent signs the child, and that
some certificate in the chain is signed by a trusted certificate. Verification is a basic recursion:

if this_certificate was signed by trusted_certs:

 return

else

 return verify_chain(parent, trusted_certs)

At each recursion, the parent is tested to ensure that it did sign the child. If a parent did not sign a
child, then an exception is thrown. If the bottom of the recursion is reached and the certificate does not
match a trusted root, then an exception is thrown.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 23 of 40

4.10 Global Identifiers (GIDs)

In PlanetLab GENI, per the SFA, each Principal and object is designated by a Global Identifier
(GID). A GID includes a tuple of the following fields:

 (uuid, hrn, public_key)

 UUID is a unique identifier and is created by the python uuid module (or the utility function
create_uuid() in gid.py).

 HRN is a human readable name. It is a dotted form similar to a backward domain name. For
example, planetlab.us.arizona.bakers.

 PUBLIC_KEY is the public key of the principal identified by the UUID/HRN. It is a Keypair
object as defined in the cert.py module.

It is expected that there is a one-to-one pairing between UUIDs and HRN, but it is uncertain how
this would be inforced or if it needs to be enforced.

GIDs are a derivative class of certificates and as such the GID class inherits all the methods of the
certificate class. The 5 fields of the GID tuple are stored in the subject-alt-name field of the X509
certificate. Two routines are included to package and unpackage these fields: Encode() and Decode().
Encode should be called prior to signing the GID. Decode is automatically called on demand by the
various get_*() functions.

Verification first performs the checks of the certificate class (verifying that each parent signs the
child, etc). In addition, GIDs also confirm that the parent's HRN is a prefix of the child's HRN.
Verifying these prefixes prevents a rogue authority from signing a GID for a principal that is not a
member of that authority. For example, planetlab.us.arizona cannot sign a GID for
planetlab.us.princeton.foo.

4.11 Credentials

In PlanetLab GENI, per the SFA, a Researcher requires a Credential to access an Aggregate or a
Component to have resources authorized and assigned to create slivers, and to control slivers.

Credentials are a derivative class of certificates and as such the credential class inherits all the
methods of the certificate class. A credential is a tuple:

 (GIDCaller, GIDObject, LifeTime?, Privileges, Delegate)

where

 GIDCaller identifies the holder of the credential. When a credential is presented to a
component, the security layer ensures that the client matches the public key that is contained in
GIDCaller.

 GIDObject identifies the object of the credential. This object depends upon the type of the
credential. For example, the credential for a user likely has GIDObject == GIDCaller. Credentials for
slices would include the GID of the slice in the GIDObject field. Credentials for authorities include the
GID of the authority in the GIDObject field.

 LifeTime? is the lifetime of the credential. Currently not implemented; expect to implement it
as an expiration date, and refuse credentials beyond that date.

 Privileges is a Rights object that describes the rights that are granted to the holder of the
credential.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 24 of 40

 Delegate is a True/False bit that indicates whether or not a credential can be delegated to a
different caller.

The 5 fields of the credential tuple are stored in the subject-alt-name field of the X509 certificate.
Two routines are included to package and unpackage these fields: Encode() and Decode(). Encode
should be called prior to signing the ticket. Decode is automatically called on demand by the various
get_*() functions.

4.12 Authentication

In the PlanetLab GENI suite, authentication of a Principal’s client is done by the server at a
Registry, Slice or Management Interface.

Both the client and server specify their private and public keys when opening an SSL socket, and
upon successful connection establishment, each knows the other's public key (by convention, this key is
stored in an X.509 certificate).

Generally, each operation contains a credential as the first argument. This credential includes the
GID of the caller, which in turn contains the public key of the caller. The server ensures that this public
key matches the public key that is being used to decrypt the HTTPS connection, thus ensuring the caller
must possess the private key that corresponds to the GID.

Next, the geniwrapper module decode_authentication routine is used to verify that the credential
gives the caller the right to invoke the corresponding operation and that the credential is properly signed
(recursively) by its parents.

Authentication of the server by the client is left as an exercise for the client. It may be done easily
by specifying the server's public key when the client create the HTTPS connection. This presumes the
client knows the public key (or GID) of the server he is trying to connect to.

4.13 Authorization

Authorization in the PlanetLab GENI suite, per the SFA, is mediated by Credentials and Tickets
which are presented by Researchers to Registries, Aggregates and Components.

For example:

 A Researcher (using a Slice Manager) presents a Slice Credential to an Aggregate Manager to
retrieve (get) a Ticket that authorizes the Researcher to use certain specified resources.

 Next, the Researcher presents the Ticket to a Component Manager to instantiate the slice and
have the authorized resources actually assigned.

 Finally, the Researcher presents the Slice Credential to the Component Manager to control the
slice (sliver).

4.14 Tickets

In PlanetLab GENI, per the SFA, a Ticket is a signed certificate that authorizes the holder to use
certain specified resources. Similar to GIDs and Credentials, tickets also leverage the certificate object.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 25 of 40

A Ticket is a tuple:

 (gidCaller, gidObject, attributes, rspec, delegate)

where

 gidCaller = GID of the caller performing the operation

 gidObject = GID of the slice

 attributes = slice attributes (keys, vref, instantiation, etc)

 rspec = resources

Tickets are created by invoking GetTicket?() on the plc wrapper. The slice attributes and rspec are
taken from the planetlab slice database and represent the current state of the slice. As of yet, tickets do
not include any concept of time -- a ticket represents the state of the slice at the current time only.

Tickets are redeemed by invoking RedeemTicket?() on the slice interface. The attributes and spec
are combined back into a planetlab slice record and handed off to the node manager.

Tickets are signed by an authority and include parentage information that traces the chain of
authorities back to a trusted root.

Verification of a ticket uses the standard parentage verification provided by the certificate class.
Specifically, each certificate is signed by a parent, and some certificate must resolve to the trusted root
set that is specified on the component.

Unlike credentials and GIDs, the parent of a ticket may be a degenerate ticket that does not include
the full 5-tuple (caller, object, attributes, rspec, delegate). In such a case, the parent is just a placeholder
in the chain of authority used to convey the parentage information.

Delegation of tickets is not something that is discussed in the SFA, but it is supported in the ticket
class and may be a useful feature. For example, Alice may hold a ticket for a particular component, and
delegate that ticket to Bob. Bob could then instantiate a slice for Alice. This may be one way to
implement a slice manager.

4.15 Resource Specification (RSpec)

A resource specification (RSpec) describes a component in terms of the resources it possesses and
constraints and dependencies on the allocation of those resources.

In PlanetLab GENI, the rspec is currently a dictionary of {name: value} pairs. These pairs are taken
verbatim from the planetlab slice database.

The general rule that is used is that things in the slice record that do not specifically imply a
tangible resource (initscripts, keys, etc) are treated as attributes and things that do specify a tangible
resource (disk, network, etc) are treated as the rspec.

The definition of an rspec is evolving. It remains to reconcile the eclipse schema with Geniwrapper;
see http://svn.planet-lab.org/wiki/PLDataModel . Gacks is also using another rspec format, which
may be need to be reconciled with the eclipse schema and/or geniwrapper.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 26 of 40

5 Principals in the PlanetLab GENI Control Framework

5.1 Identification

Each principal (user) in PlanetLab GENI, such as a Researcher, has a unique Global Identifier
(GID) that does not change, and which includes a Human Readable Name (HRN), a UUID and a Public
Key; see Section 4.10.

Question: Who creates the GID, including UUID and HRN?

5.2 Registration

Each principal (user) is registered in the Principal Registry, part of the PLC Registry, implemented
on top of the PLC database; see Section 4.1.

Once registered, a Principal can be authenticated, and can be identified so that they can be given a
appropriate privileges.

Question: Who does this? How is it done?

5.3 Authentication

Each PlanetLab GENI principal (e.g., Researcher) can be authenticated by the server at a Registry,
Slice or Management Interface. Generally, each operation contains a credential as the first argument.
This credential includes the GID of the caller, which in turn contains the public key of the caller. The
server ensures that the public key from the credential matches the public key that is being used to
decrypt the HTTPS connection; see Section 4.12.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 27 of 40

6 Aggregates and Components in PlanetLab GENI Control Framework

6.1 Identification

Each Aggregate and Component in PlanetLab GENI has a unique Global Identifier (GID) that does
not change, and which includes a Human Readable Name (HRN), a UUID and a Public Key; see
Section 4.10.

Question: Who creates the GID, including UUID and HRN?

6.2 Registration

 Each Aggregate and Component must be registered in the Component Registry, part of the PLC
Registry, implemented on top of the PLC database; see Section 4.1.

Question: Who does this? How is it done? What information is included?

6.3 Resource Allocation

 Components (nodes) implicitly delegate control over their resources to PLC (the aggregate), which
is responsible for implementing PlanetLab’s resource allocation policy.

Question: How is it done? How does the Aggregate Manager know what Tickets can be issued?
How is this based on entries in the Component Registry?

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 28 of 40

7 Slices in PlanetLab GENI Control Framework

7.1 Identification

Each Slice in PlanetLab GENI has a unique Global Identifier (GID) that does not change, and
which includes a Human Readable Name (HRN), a UUID and a Public Key; see Section 4.10.

Question: Who creates the GID, including UUID and HRN?

7.2 Registration

In the PlanetLab GENI suite, slices are registered in the PlanetLab database contained within PLC,
and (per the SFA) principals (users) are given privileges associated with a slice, such as PI or
Researcher.

Question: Who does this? How is it done? What information is included?

7.3 Credential Issue

In PlanetLab GENI, a Researcher (or another principal with appropriate privileges) requests a Slice
Credential from the Slice Registry in the PLC Registry.

The Slice Credential is signed by the Slice Authority and can then be used by the researcher to
retrieve (get) a Ticket, etc.

Question: But, the Researcher needs to present a credential to the PLC Registry when it requests a
Slice Credential. How can this process be bootstrapped?

Consider this process:

 A Principal assembles their basic identity (GID, including GlobalName and optional
ObjectID) and authentication (PrivateKey and PublicKey pairs) records, and the
administrator of one of their responsible principal authorities creates a Principal Record for
them, and registers it in the Principal Registry.

 The Principal calls the Principal Registry Interface with a GetCredential request where both
the calling and referenced objects are themselves, identified with their GID.

 The registry matches the GID with the existing Principal Record, and verifies their identity
via the certificate carried over the SSL connection.

 Finally, the registry issues the Principal a “self credential”, which can then be used to
access a registry to get other credentials.

Now that a Principal has a “self credential” identifying themselves, they can use it to request
additional credentials at other registries. These other registries must recognize the signatures on the
“self credential”.

For example, following the SFA, a Researcher can use their “self credential” to call the Slice
Registry Interface with a GetCredential request, with the referenced object being a slice to get a “slice
credential” that will allow them to create slivers, etc.

Question: Is there only one Slice Credential that the Researcher holds and uses repeatedly, or must
they repeatedly get credentials, that then have only “one use”?

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 29 of 40

8 Experiment Setup in PlanetLab GENI Control Framework

The PlanetLab GENI control framework provides all of the basic functions necessary for a GENI
researcher to setup an experiment.

8.1 Resource and Topology Discovery

The PlanetLab GENI control framework allows a Researcher using a Slice Manager to discover all
of the resources available to them from the Aggregate(s) associated with the PlanetLab GENI suite.

This is done by contacting the Component Registry in the PLC Registry, calling
LISTCOMPONENTS, and compiling the results in the Slice Manager.

Question: How exactly is this done? What information is returned?

Question: How can they discover their interconnection topology?

8.2 Resource Sharing

In PlanetLab GENI, each component provides for resource sharing among multiple researchers,
referencing multiple slices, and assigns each researcher their own sliver or slivers.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 30 of 40

8.3 Resource Authorization and Policy Implementation

The PlanetLab GENI control framework allows an Aggregate to authorize the assignment of
resources to a Researcher referencing a particular Slice, following local policies. See Figure 8-1.

Figure 8-1. Resource Authorization plus Assignment

Step 1a: To URL of Slice Interface on Aggregate Manager, Researcher using Slice Manager
presents Slice Credential and and desired RSpec, and calls GETTICKET.

Step 1b: Aggregate decides using its local policy that it will authorize resources to this Researcher
and the referenced Slice on a “best effort” basis, and then returns a Ticket to the Researcher.

Question: What is local policy? Does the Aggregate give a Ticket to anyone with a valid Slice
Credential, i.e., there is an “always yes” local policy?

8.4 Resource Assignment

The PlanetLab GENI control framework allows a Component to assign resources to a Researcher
presenting a valid Ticket. See Figure 8-1.

Step 2a: To URL of Slice Interface on Component Manager, Researcher using Slice Manager
presents Ticket and calls REDEEMTICKET.

Step 2b: Component assigns resources on a “best effort” basis to the Researcher and their Slice,
and a Sliver is created.

Question: Is there a way to set starting time and duration?

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 31 of 40

Question: Is there a way to get a firm commitment?

8.5 Component Programming

The PlanetLab GENI control framework should allow a Researcher to login to an assigned sliver
(Component), load code, and then boot it, etc.

This could be done via a Sliver Interface; see Section 4.8.

Question: How will this function provided in PlanetLab GENI?

The PlanetLab GENI control framework allows a Researcher (or Operator) to reboot an assigned
sliver (Component) using the Management Interface on the Component. See Figure 8-2.

G
etB

ootS
ta

te

S
etB

ootS
ta

te

R
e

boo
t

C
re

d M
A

 ...m
ap

rin

C
red M

A
 ...m

ap
rin

C
re

d M
A

 ...m
ap

rin

Figure 8-2. Managing a Component

The management interface includes three operations:

SetBootState(Credential, State)

State = GetBootState(Credential)

Reboot(Credential)

The first operation is used to set the boot state of a component to one of the following four values:
debug (component fails to boot, but should keep trying), failure (component is experiencing hardware
failure, and so is taken offline until a human intervenes), safe (component available only for operator
diagnostics), or production (component available for hosting slices). The second operation is used to

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 32 of 40

learn a component’s boot state and the third operation forces the component to reboot into the current
boot state.

Note that we expect a given Component to support a much richer set of management-related
(O&M) operations, effectively extending the required operations listed here. The management interface
defines only the minimal set of operations all components must support.

8.6 Disconnected Operation of Components

In a GENI suite, some of the components (such as wireless servers) will require “disconnected
operation”, where they are controlled and polled in the short periods of time that they are connected to
the suite.

 (Note yet defined in PlanetLab GENI.)

8.7 Resource to Resource Connections

When a researcher has been assigned resources from two (or more) aggregates that must be
connected together, the PlanetLab GENI control framework provides a way for the researcher to learn
about the connection points, request the connections, following the necessary sequence, and receive a
verification that the connection has been completed.

(Note yet defined in PlanetLab GENI.)

8.8 Setup Verification

When a researcher has been assigned resources on GENI (or federated) aggregates for an
experiment, the control framework should provide a way for the researcher to ask the aggregates to
verify the setup before it is time for the experiment to start.

 (Note yet defined in PlanetLab GENI.)

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 33 of 40

9 Experiment Execution in PlanetLab GENI Control Framework

9.1 Experiment Control

When a Researcher, associated with a designated slice, has been assigned resources on aggregates
for an experiment, the PlanetLab GENI control framework provides a way for a Researcher to control
the slices/slivers in the components using commands appropriate to the nature of the sliver. See Figure
8-2.

Figure 9-1. Controlling a Slice/Sliver.

Per the SFA, here are four general commands, made by a Researcher using a Slice Manager and
presenting a SliceCredential:

Command 1: StartSlice

Command 2: ResetSlice

Command 3: ResetSlice

Command 4: DelteSlice

An alternate approach would be for the researcher to use a sliver credentials. A sliver credential
would be identical to a slice credential, but would 1) only be redeemable on a particular component,
and 2) would resolve to a trusted_root unique to that component (likely the component's GID

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 34 of 40

certificate). Sliver credentials would be returned by the RedeemTicket? call and would give the caller
the permission required to start and stop the sliver, etc.

Sliver credentials are not yet implemented in geniwrapper, but their implementation would be
straightforward.

9.2 Experiment Data Collection and Management

GENI will provide for experiment data collection and measurement, both locally within aggregates
(components) and globally in designated measurement services. It is expected that large data files will
be gathered by these services, and that they will need to be transferred to a software repository and/or
an experiment analysis service after an experiment.

To accomplish this, the control framework should provide the mechanism(s) to allow a researcher
to transfer large software records between components, software repositories, etc. For example, the
control framework could provide a file transfer service based on ftp.

(Not yet defined in PlanetLab GENI).

9.3 Forensic and Usage Data Collection and Management

Forensic and usage data from a GENI suite has many uses, including:

 Finding anomalies that indicate errors, faults, malicious activity, etc.

 Allowing help desk functions to be provided to researchers.

 Permitting proper administration and management of suite resources.

 Permitting financial accounting where necessary.

The control framework should provide a structure for collecting and managing forensic and usage
data, including formats and log structures.

(Not yet defined in PlanetLab GENI.)

9.4 Experiment Status Monitoring

Experiment status can be monitored in a GENI suite by:

 Defining trigger events associated with the use of resources in a sliver, an aggregate or a
component.

 Defining watchdog processes, to periodically verify functions in a sliver, an aggregate or a
component.

 Sending notifications to a researcher, an administrator, an operator, or anyone who has
requested receipt.

The control framework should provide a structure for experiment status monitoring, and sending
notifications.

(Not yet defined in PlanetLab GENI.)

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 35 of 40

9.5 Experiment Status Commands

The control framework must provide a structure for commanding changes in the status of resources
used by an experiment. It must be possible for changes to be commanded by a researcher or by an
aggregate or component administrator or operator. For example, it must be possible to command
“shutdown all slivers in this aggregate associated with slice x”.

(Not yet defined in PlanetLab GENI.)

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 36 of 40

10 Federation in PlanetLab GENI Control Framework

10.1 Federated Aggregates and Components

A PlanetLab GENI control framework should provide for the inclusion of a variety of federated
aggregates (and their included components) to provide a wide range of resources to the Researchers.
One possible approach is shown in Figure 10-1, where an Aggregate Manager for VINI resources is
included in the PlanetLab GENI suite.

Figure 10-1. Federated Aggregates and Components

This scenario spans multiple aggregates—PlanetLab and VINI—each responsible for its own set of
components. That is, VINI and PlanetLab are distinct management authorities, each responsible for a
distinct aggregate of components. In this case, VINI does not operate its own registry or slice manager,
and PlanetLab’s Slice Manger presents users with a unified view of all the components available on
both systems, hiding the fact that its global view spans multiple aggregates.

To create a slice, the PlanetLab SM would need to contact both available aggregate managers to
learn about the available components. It would then present these components to the user in an SM-
specific way. Once the user selects the set of components to be included in his or her slice, the SM
would call the Registry to retrieve the necessary credentials, and then invoke the InstantiateSlice
operation on the respective aggregates to create the cross-aggregate slice.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 37 of 40

Note that in this scenario (and the one described in the next section), the SM plays the role of an
aggregate of aggregates. When viewed from this perspective, it makes sense that the SM exports the
slice interface, just like any other aggregate (i.e., the Researcher Interface is a superset of the slice
interface).

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 38 of 40

10.2 Federated Suites

The control framework should provide for the federation of a GENI suite with other suites, where
each suite has its own complete set of entities, but is independently owned and operated.

 One possible approach is shown in Figure 10-2, where a PlanetLab Europe GENI suite is
federated with the PlanetLab Central GENI suite.

Figure 10-2. Federated Suites.

Our final scenario, shown in Figure 3.6, involves symmetric federation between two autonomous
aggregates, one representing PlanetLab Europe (PLE) and the other representing the rest of PlanetLab
(PLC). Both systems support their own slice manager, registry servers, aggregate manager, and set of
components.

As in the previous scenario, users interact with their “local” SM, which creates and manages slices
spanning both aggregates.

Although not explicitly depicted in the figure, the PLC registry points to the PLE registry. That is,
registry records for the top-level PlanetLab authority, including the record for the EU subauthority, are
maintained in the PLC registry, while records associated with the EU subauthority are maintained in the
PLE registry server.

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 39 of 40

11 PlanetLab GENI Cluster B Spiral 1 Implementation

11.1 Start of Spiral 1

At the beginning of Spiral 1, the PlanetLab GENI Cluster B implementation includes the PLC
Registry, the PLC-based Aggregate Manager, associated PLC components, other associated component
and a PLC-based Slice Manager. See Figure 11-1.

Figure 11-1. Start of PlanetLab GENI Cluster B Spiral 1 Implementation.

Question: What components from other Cluster B projects are included?

Question: Are there any other aggregates?
Question: When are additional Slice Managers introduced?

PlanetLab GENI CF Overview 011409 GENI-SE-CF-PlanetLabGENIOver-01.2.doc January 14, 2009

 Page 40 of 40

11.2 Completion of Spiral 1

Eventually, the following Cluster B projects will be integrated into the PlanetLab GENI
implementation; see Figure 11-2.

Figure 11-2. PlanetLab GENI Cluster B Implementation.

