
 1

Using the Component and Aggregate Abstractions in the
GENI Architecture
GDD-06-42

GENI: Global Environment
for Network Innovations

Version of December 19, 2006

Status: DRAFT Document (Version 0.2)

This document is an unreleased work in progress that continues to evolve rapidly. General
release outside of the GENI PG/WG community is not appropriate at this time, although
comments from all within this community are solicited and welcome.

Certain aspects of the GENI architecture, with potential effect on this note, are not yet
addressed at all, and for those aspects that are addressed, a number of unresolved issues have
been identified in the relevant documents. Further, due to the active development and editing
process, some portions of this document may be logically inconsistent with others in the series.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

This document was prepared by the Facility Architecture Working Group.

Author: John Wroclawski, USC/ISI

This work is supported by NSF grant CNS-0631303.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

Revision History

Version Changes log Date
v0.1 Original version posted 10/28/06

v0.2 Figures, minor updates 12/19/06

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

Table of Contents

1 Introduction.. 6
2 Canonical Implementation .. 7
3 Separating the Component Manager and Components ... 7
4 Synthetic Resources .. 8
5 Aggregates .. 10

5.1 Fundamental Concepts ... 10
5.2 A Two-Component Example... 10
5.3 Synthesis and Constraint Across Multiple Components .. 12

5.3.1 Aggregation for Convenience vs Aggregation by Necessity... 13

References .. 14

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

1 Introduction
The GENI Architecture Overview [GDD-06-11] defines and describes two system-wide
abstractions of fundamental importance; Components and Aggregates. However, little
guidance is provided in that document as to the use of these abstractions. The purpose of this
note is to expand on the architecture overview by considering aspects of the component and
aggregate abstractions in more detail, and discussing some ways these abstractions might be
used to describe different kinds of components in practice.

We start by revisiting the definition of a component, with slight additional detail. Three basic
properties of a component are important to the material of this note.

1. A component implements a logically related collection of resources of value to GENI
users.

2. Each component can be characterized by two fundamental properties:

a. An RSpec, which consists of

i. A list of resources that can be allocated and managed, and

ii. A set of constraints that express relationships among those resources.

b. A set of access rights, controlling which principals in the system can acquire and
manage the component’s resources.

3. Each component is controlled by a Component Manager, or CM. The CM exports a
standard interface that allows users and system services to acquire, allocate, and manage
resources within the component.

4. Each component is named, and this name is registered in a (the..) Component Registry
with a reference back to the component. Registration of the component allows it to be
located by users and system services.1 The reference allows these users or services to
invoke operations at the component’s Component Manager, if access controls permit.
Naming and Registration of Components is described further in [GDD-06-11].

Technology Decision: In the current implementation, the component name
includes a URI. This URI is used to invoke Web Services based operations at the
component’s Component Manager, which implements the defined component
Interface.2 Note that these control operations do not flow through the registry,
they are carried out directly between the component exporting an interface and
the user or service invoking that interface.

Engineering Note: It may be appropriate to explore whether the Web Services
registry mechanism UDDI is suitable for use as a component registry in this
context.

1 These system services might in turn provide higher-level component selection functions. The
component registry is just the low-level starting point for this hierarchy of services.

2 The Component Interface is accessed through a Web Services URL associated with the
component’s name.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

2 Canonical Implementation
Much discussion of GENI components to date has assumed a canonical implementation model,
with the following general properties.

1. The component is implemented on a platform, such as a general-purpose computer or
blade server, that includes both a general-purpose CPU of some sort and a direct
connection to the GENI control plane.3

2. The “component manager” controlling this component is implemented within the
component, using the general-purpose CPU. The component manager for the
component can be reached through the GENI control plane’s connectivity.

Figure 1 shows important elements of this canonical implementation. This implementation
pattern is well suited for a significant number of GENI components.

Figure 1: Elements of a Canonical Component Environment

3 Separating the Component Manager and Components
The canonical implementation of Section 2 shows the use of one Component Manager per
component, with the Component Manager software embedded within the component’s
operating system. However, there are cases where it is appropriate to decouple these two
functions, and to implement the Component Manager on a separate control computer. In many
such cases, it may be appropriate for a single Component Manager to support and manage
more than one component.

3 The concept of an explicit GENI control plane has not been identified in the architecture to
date. We assume into existence this concept, represented in the current implementation and in
this discussion by Web Services based control operations carried over the extant Internet. A
future version of GENI could easily substitute a different connectivity path while preserving the
same service-based operation model, and perhaps the same Web-based protocols, which are not
intrinsically dependent on TCP/IP.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

Figure 2: Remote CM Managing Multiple Components

Figure 2, above, shows one such example. In this figure, a single Component Manager,
implemented on a general-purpose computer, implements and exports (registers) a separate
Component interface for two separate components, perhaps sensor platforms. The result is that
each sensor platform is visible to the system as a separate component, and can be configured
and allocated independently by users and higher-level system services. However, the hardware
and operating system of the sensor platform does not need to support a CM, and does not need
to directly concern itself with registering or managing the component.4 The form of the
connection between the CM and the individual components it is managing is private to the CM
and its managed components.

Because each component is separately visible, each component will have a separate name, and
be registered separately in the component registry. However, the actual responsibility for
implementing and interpreting the Component interface operations, and for registering each
sensor Component, falls to the shared Component Manager running on the general-purpose
computer. In this circumstance, the actual control channel mechanism and protocol between the
Component Manager running on the general-purpose computer and the individual sensor
platforms is not specified by the architecture, and may be private.

Engineering Note: An alternative perspective that achieves exactly the same
external result is that the general-purpose computer in the example runs multiple
instances of a Component Manager, with each instance associated with a single
sensor platform. In some circumstances, this may lead to simpler software design
and facility management. The important concept common to both approaches is
that a large number of lightweight Components can be managed and controlled
from a single, non co-located Component Manager.

4 Synthetic Resources
The GENI Architecture Overview [GDD-06-11] describes the concepts of Resources and
Resource Specifications (RSpecs). In this discussion, resources are generally viewed as

4 A better picture here might show very small, perhaps non-virtualizable sensor platforms, such
as Motes.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

representations of physical (or virtualized) quantities, such as CPU cycles or network
bandwidth.

However, it will sometimes be useful to describe and control a Component in terms of resources
that describe frequently required low-level logical functions of the Component, independent of
the actual physical elements used to implement the function.

Figure 3: Programmable Router with Line Cards

Figure 3 shows an example of such a synthetic resource. Here, the component being described
and managed is a high-end router, which is constructed in the usual fashion from a number of
line cards, a switch fabric, and a control processor.5 One function commonly needed from such
a component might be to accept data (in the form of packets, frames, lambdas, etc.) on one port
and pass the data through to another port without otherwise processing it. This function can be
described by a synthetic resource called a splice.

The actual implementation of a splice is dependent both on the details of the component and
the form of the data, but need be known only to the software implementing the component. For
example, in a packet router, the allocation of a splice resource might involve configuring an
incoming line card to remove a packet header label and allocate a switch fabric label;
configuring the switch fabric to pass data arriving with that label to an output line card; and
configuring an output line card to add an appropriate packet header label and send the packet
to a particular output port.

In the implementation described above, the splice resource requires no cycles from a general-
purpose data-path CPU, and might be implemented from physical elements (ie, line card label
table slots) that are otherwise not visible to the outside world. In a different packet router
implementation, the splice resource might require the use of a data-path CPU to perform the
label swapping. In this case, and unlike the first, the logical splice resource might be coupled by
a constraint with the virtualized CPU resource. In a third, lambda-level implementation, the

5 A GENI programmable router will contain one or more high-speed programmable data path
processors as well. However, in this particular example the existence of these processors is not
relevant.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

splice resource might require a completely different set of physical resources, but express the
same logical concept to the requestor.6

It is important to note that these synthetic or logical resources become part of the agreed-on
ontology of resources for the classes of component they are implemented on, and should be
defined using the same level of specification mechanism and global agreement as are more
traditional resources.

5 Aggregates
The GENI Architecture document [GDD-06-11] describes an abstraction called an aggregate.
Unfortunately some ambiguity is introduced because the same name is used to refer to two
fundamentally different constructs; coordination aggregates and portal aggregates. The
discussion of this section refers only to coordination aggregates, hereafter called simply
aggregates. Discussion of the uses of portal aggregates may be found elsewhere.

The waters are further muddied because, as discussed below, aggregation is only a subset of the
functionality provided by the aggregate construct. Other uses may be equally important.
However, for the moment we retain the name for consistency.

5.1 Fundamental Concepts
Recall that a component is characterized by two fundamental properties:

1. An RSpec, which consists of

a. A list of resources that can be allocated and managed, and

b. A set of constraints that express relationships among those resources.

2. A set of access rights, controlling which principals in the system can acquire and manage
the component’s resources.

An atomic or base component is, at high level, a component for which the resources being
described are implemented directly on some supporting platform as physical, sliceable, or
logical resources.

An aggregate, on the other hand, is best thought of as a transformer. It is a component that itself
registers under a unique name and exposes a component interface, but actually implements its
function by controlling one or more other components. In so doing, it generally alters, adds to,
or transforms one or more of the basic component properties - resources, constraints, or access
rights7 - so that the new component differs from the old component(s) in some useful way.

5.2 A Two-Component Example
Figure 4 shows an example of an aggregate used to provide different levels of access to a
component’s internal resources for normal users, versus a limited class of “management” or

6 Here we assume that the nature of the resources required and function to be performed can be
determined by the specific ports that are being spliced together. Other approaches are possible.

7 It is possible but of uncertain usefulness to discuss the null aggregate, which maps a component
to another component (ie, one with a different name) without altering any of the properties of
the mapped component.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

“sophisticated” users. This situation might arise when certain configurations of a component’s
resources are needed for certain experiments or in special situations, but could also cause
unwanted side effects or damage to the component or network.

Figure 4: Aggregate Used to Transform a Component's Characteristics

In the example, the base component BC is described by an RSpec that defines no constraints on
the use of component resources.8 At the same time, the base component imposes very tight
access controls. The effect is that system elements allowed to control the base component can
configure and utilize the component’s resources with full freedom. In return, it is expected that
these system elements will have full understanding of the possible negative effects they can
cause.

In the example, one of the system elements granted this full freedom is the aggregate
(transformer) component TC. This component takes three actions. First, it implements a filter
process that imposes additional constraints on the allocation and configuration of the base
component’s resources. Second, it creates a new RSpec that captures and describes those
constraints. Third, it registers itself as a new (differently named) component, with relaxed
access controls that permit utilization by normal system users.

When this component is utilized, it operates by first receiving requests through its own
component interface and applying the filter to ensure that requests meet the desired constraints.
Requests that meet the constraints are passed to the base component. Requests that do not meet
the constraints generate an error.

It is easy to see that the overall effect of this structure is to create two different “access paths” to
the same underlying component, but with different behaviors and constraints, and with
different access rights. Similar structures can be used to create different “views” of a
component, where the base component’s resources are expressed using different metrics or
units; in this case the aggregate (transformer) component performs the desired transformation
before passing the requests on to the base component.

8 And, of course, is implemented in a way that matches the RSpec.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

A central merit of this structure is that transformer components need not be created by the same
entity that created the base component. This allows any principal with access rights to the
original, base component to offer a transformed or constrained view of that component to
others for further use.

5.3 Synthesis and Constraint Across Multiple Components
Figure 5 shows an aggregate created to manage a set of components. This construct is most
useful when some constraint needs to be enforced between components. A simple example
might be a wireless network, where constraints are desired on the allocation of spectrum shared
across all elements of the network.

Figure 5: Aggregate Used to Control Multiple Components

In this case the aggregate component AC is defined by a synthesized RSpec that allows the user
to express resource requirements at the aggregate level. The aggregate component
implementation then uses this aggregate RSpec to determine what resources are required at the
individual component level, after implementing any further constraints that are required
between the separate base components. These requests are then passed on to the base
components, by means of the aggregate component invoking operations on the Component
Interfaces exported by each base component.

Aggregate RSpecs are presently not well defined. Two broad forms are possible. First, an
aggregate RSpec may simply consist of a conceptually concatenated list of RSpecs from each
base component, together with any additional resource constraints and specifications needed to
manage resources shared between components. A second form would express the resources of
the aggregate component at a higher level suitable for configuring the aggregate, and depend
on the aggregate component to transform the higher-level requests into lower-level requests
appropriate for each individual base component.

Note that the concepts of this and the previous sections can be combined. A set of base
components can first be captured and managed by an aggregate that imposes additional, shared
constraints, but still exposes the resources of each base component at the individual level. A
second, transformer aggregate could then be used to implement a separate, higher level
resource description and control mechanism appropriate for the aggregated component
structure.

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

While this text describes an aggregate component as aggregating across a set of base
components, it may be useful at times for an aggregate component to act over components that
themselves are aggregates.

Engineering Note: In principle, it is possible to construct ever larger aggregate
components, each concatenating the RSpecs from the constituent components. In
practice, such aggregates represent a scalability and comprehensibility concern.
It is an open issue whether such very large aggregates are feasible or useful, but
it is likely in any case that large aggregates are most easily controlled in normal
use by higher-level configuration services.

5.3.1 Aggregation for Convenience vs Aggregation by Necessity

In the picture of the previous section, we see that the aggregate component is acting over a set
of components that are also accessible individually. That is, both the aggregate and its
constituent base components have registered themselves with the component registry, and are
available for use by any system entity with appropriate access rights.

In this situation, we say that the aggregate is providing a service or constraint for convenience.
The aggregate is assisting with the provision of a higher level resource management constraint,
and use of the aggregate may be the preferred access path to the individual components for the
vast majority of users, but it is possible for some other system entity – a user or a higher level
service – that has the appropriate access rights to access the individual components and manage
the resources itself.

In virtually all cases this flexibility is highly desirable.

An alternate situation is that where the additional level of management implemented by the
aggregate is absolutely required for correct or safe operation of the system. In this case, there is no
reason for the individual components to be accessible at all.

There are three ways to accomplish this.

1. The individual components can grant access rights only to the aggregate component that
manages them. The individual components are still registered in the component registry,
and the aggregate component can still rendezvous with its constituent components
through the system’s normal registration and lookup procedures. Although only the
aggregate component would be able to allocate and control resources on the individual
components, other system services, such as those that enumerate or probe the status of
components, would still be able to do so through registered, and thus locatable,
interfaces.

2. The system architecture might support unregistered components. Rather than the
subcomponents of the “by necessity” aggregate registering in the usual way, these
components might “register” themselves only with the aggregate component. Access
control would still be used to ensure that only the aggregate had access to the
constituent components. However, because the constituent components are no longer
registered in the usual way, other system services would not be able to locate or detect
these constituent components individually.

3. The implementer may determine that the component is not really an aggregate. In the
circumstance where no access to the individual sub-components of an aggregate is
appropriate or required, it is possible that the component is not really an aggregate. In
this circumstance, it may be more appropriate to implement the entire structure as a

Using the Component and Aggregate Abstractions… 12/19/06 (0.2)

base component, perhaps managed by a remote component manager, as described in
Section 3

References

[GDD-06-11] Larry Peterson and John Wroclawski (Eds.), "Overview of the GENI Architecture",
GENI Facility Architecture Working Group, September 2006.

