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Sidebars
This document makes use of sidebars to call out related and unresolved issues. They include:

Unresolved Issue: Identifies an unresolved issue or a topic that requires 
further development.  

Engineering Issue: Addresses an engineering issue, such as performance, 
reliability, and availability.  

Technology Decision: Identifies a concrete technology—protocol, format, 
language—that implements a function of a GENI component.  

Technology Illustration: Identifies a concrete technology or solution that 
illustrates how a common function might be implemented on a specified 
GENI component.
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Executive Summary
GENI is a geographically distributed facility designed to support the deployment and 
evaluation of global-scale network architectures and related services that will be qualitatively 
better than today’s Internet.  This document describes a reference model for a canonical GENI-
compliant component.  

A GENI component is a shared, commonly managed facility computing or networking 
resource.  Examples of components include a

• programmable edge node, or PEN (i.e., a conventional compute server),

• programmable core node, or PCN (e.g., a backbone router), and a

• programmable access point, or PAP (e.g., for wireless connectivity).

Though these individual components provide distinct services to researchers or experimenters, 
they share a set of mandatory functions in support of the GENI Management Core [GDD-06-11]. 
For example, each component is customizable by authenticated GENI researchers and is 
remotely manageable by GENI operations staff.  As a consequence, a component 
implementation must support a common set of functions providing for administration, 
management, and security. This document describes these common component functions.
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1 Introduction
The GENI facility is a geographically distributed set of physical computing and network 
elements (e.g., processors, storage, communication links). A GENI component is a physical 
element (or set of elements) that is connected to and managed by the GENI facility. Each 
component is assigned a unique name called a distinguished identifier. 

A GENI-compliant component implements a set of mandatory functions in support of the GENI 
Management Core [GDD-06-11]. The mandatory functions let authenticated GENI researchers 
access and deploy services to a component to meet their experimental system requirements. A 
compliant component provides multiplexing functions, which lets GENI researchers use the 
component in a time-shared manner. The mandatory functions also support isolation, security 
and privacy of hosted experiments. The mandatory functions also permit GENI operations staff 
to remotely manage and retain operational control of the component.

This document describes the common, mandatory local functions of a GENI-compliant 
Programmable Edge Node (i.e., edge compute server), which we present as a reference GENI 
component. We focus on the set of functions that must be present that let authenticated 
researchers access and share the component, and the set of functions required to remotely 
manage the component.  Section 2 provides an overview of the component requirements, and 
Section 3 introduces a component software architecture supporting those requirements.  Section 
4 describes an illustrative implementation of the component software architecture, identifying 
specific, existing technologies that could support such an implementation.  Section 5 presents a 
concrete example of a complex GENI site; examining a site helps to identify how component
requirements complement GENI site requirements, and also illustrates how the required 
component functionality can be spread across multiple computing and network elements at a 
single site. Finally, Section 6 discusses some issues related to component requirements.

2 Requirements
The GMC defines components as the primary building block of GENI. For example, a component 
might correspond to an edge computer (i.e., PEN), or a programmable access point (PAP). A 
component encapsulates a collection of resources, including both physical resources (e.g., CPU, 
memory, disk, bandwidth) and logical resources (e.g., file descriptors, port numbers). These 
resources can be contained in a single physical device or distributed across a set of devices, 
depending on the nature of the component. A given resource can belong to at most one 
component. 

Each component exports a well-defined Component Manager (CM) interface through which 
users create and control slivers on that component.  The GENI architecture [PW06] identifies the 
software and hardware functions that a component must provide to support this interface; these 
functions include: 

1. creating and destroying slivers, binding a set of resources to a sliver, and reclaiming
those resources;

2. resource isolation between slivers, so that the resources consumed by one sliver do not 
unduly affect the performance of another sliver;
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3. preventing one sliver from eavesdropping on network traffic to or from another sliver
without permission;

4. preventing one sliver from accessing objects (e.g., files, ports, processes) belonging to 
another sliver;

5. allowing users to install software packages in their sliver without consideration for the 
packages installed in other slivers running on the same component;

6. allowing users to securely log into a sliver that has been created on their behalf;

7. delivering signals to slivers, including a “reboot” signal that runs whenever the sliver 
starts up;

8. granting privileged operations to select slivers, including the ability of one sliver to 
access private state associated with another sliver (thereby supporting sliver 
interposition);

9. powering the component on and off, and monitoring its hardware and operating system 
for errors;

10. securely booting the component into an initial configuration;

11. disconnecting the component from the network and bringing it into a safe state;

12. rate-limiting the network traffic generated by a sliver, as well as by all slivers running on 
the component;

13. for components with access to the Internet, limiting (filtering) how a sliver interacts with 
(exchanges packets with) the Internet;

14. for components with access to the Internet, providing a mechanism to audit all packet 
flows transmitted by slivers to the Internet, and determining what sliver (slice) is 
responsible for a given packet.

Functions 1-5 govern how the resources of the machine are multiplexed among different 
slivers; each sliver can be regarded as a "container" for a set of resources, whether 
physical (e.g., CPU, memory) or logical (e.g., TCP ports, files).  Functions 6-8 affect how 
individual slivers are accessed by experimenters, and what extra capabilities a sliver 
may be granted.   Functions 9-11 relates to the management of a physical component, 
especially in the event of a security incident or complaint; note that functions 9 and 10 
supplement requirements found in [GDD-06-11].  Functions 12-14 provide for 
containment of the traffic generated by a sliver, both to allow for network Quality of 
Service assurances and to prevent parties outside of GENI from receiving unwanted 
experimental traffic.

This document describes a combination of software and hardware components for a GENI-
compliant PEN that implements the functions outlined above on a single physical computer.  
Note that, though the PEN satisfies all functional requirements in a single "box", this is not 
mandatory.  For example, while functions 12-14 might be implemented by the OS running on a 
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component, they might alternatively be realized in a separate device that effectively polices how 
the component (and the slivers it hosts) interacts with the rest of the network. If such a device is 
positioned at a choke point for an entire network (or administrative domain), it can enforce 
appropriate externally visible behavior for a set of components.  This issue will be revisited in 
Section 5, which illustrates how one might implement a GENI Programmable Edge Cluster
(PEC).

3 Design of a Programmable Edge Node
A PEN serves as a canonical GENI component, in that it offers a simple and straightforward 
realization of all the functional requirements of Section 2.  This section describes a possible 
architecture for a PEN capable of realizing the GENI-compliant component requirements 
specified in the previous section.

Hardware Monitor

CM

Virtual Machine Monitor

Traffic Monitor

Secure Boot Monitor

VM1 VM2 VMn
. . .

Figure 1: A Component Software Stack

Each GENI-compliant component has an associated Component Manager. The CM learns about 
changes in the component’s state from the GENI Management Core (GMC), as described in 
[GDD-06-11], and then implements these changes by interacting with various monitoring and 
management subsystems in the component’s software stack.  Figure 1 illustrates the component
software stack, which consists of the Hardware, Secure Boot, Traffic, and Virtual Machine 
Monitor subsystems, each controlled by a Component Manager. The figure also shows a 
number of virtual machines running on the component, each corresponding to an active sliver. 

Subsystem Requirements Mandatory per component?

Component Manager 1 - 8 No (see Section 3.1)

Virtual Machine Monitor 1 - 8 No (see Section 3.2.6)
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Traffic Monitor 12-14 No (see Section 4.2.2)

Boot Monitor 10, 11 Yes

Hardware Monitor 9 Yes

Table 1: Mapping Requirements to Component Subsystems

Table 1 provides a mapping of the component requirements listed in Section 2 to the various 
subsystems in the component’s software stack. Every GENI-compliant component must at least 
implement the Hardware and Boot Monitor subsystems and Component Manager, so that it can 
be securely powered on, booted and initialized.  A typical component will also support the 
Traffic Monitor and Virtual Machine Monitor subsystems, however we will show that these 
subsystems are not mandatory in certain special cases.  The subsequent sections provide a
description of each subsystem.

3.1 Component Manager

The Component Manager is the GENI Management Core’s primary point-of-presence on the 
component.  The job of the Component Manager is to manage slivers.  It receives updates from 
the GMC and executes operations on the component. For instance, the GMC might invoke the 
CM to use the Virtual Machine Monitor (VMM) to create a sliver and load it with the credentials 
a researcher instantiating an experiment.  The CM itself might execute in a virtual machine with 
sufficient privileges to execute the necessary VMM operations.  

Though anticipated to be a rare use case, certain components can operate in a non-virtualized 
mode. In such a circumstance the component is not required to run a VMM (see Section 3.2.6), 
and hence may not have a CM either.  Instead, researchers booting a custom image on a 
component are responsible for administering all aspects of its operation after boot.  For 
example, the boot image needs to supply a secure authentication mechanism and the necessary 
credentials so that the researchers can log into the component after it comes up.   

3.2 Virtual Machine Monitor
GENI components are composed of physical elements such as processors, memory, storage, 
network interfaces, wired and wireless communication links, sensors, etc.   A primary goal of 
GENI is to share components between multiple experiments simultaneously.  Therefore a 
GENI-compliant component must be able to partition/contextualize, allocate and schedule 
physical resources (cycles, bandwidth, memory, and storage) to prevent one sliver from 
interfering with another or gaining access to information in another sliver. Moreover, slivers 
must be able to request resource reservations to receive soft real-time performance guarantees.  
The Virtual Machine Monitor (VMM) is the “operating system” that lets one or more slivers run 
concurrently on a component.  The VMM supports the multiplexing, isolation and security and 
privacy, and component-specific performance requirements of a GENI-compliant component.

Unresolved Issue: It is unclear what the ‘operating system’ is for 
specialized components, whose hardware is architecturally different from 
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conventional compute servers, such as network processors and FPGAs 
used in routers, switches, and access points.  

A PEN could run any of several candidate operating systems: hypervisors, container-based 
operating systems, and user-mode virtualization.  There is no requirement to specify a unique 
GENI edge server VMM; other existing experimental testbeds including both Emulab and 
PlanetLab can currently bootstrap multiple operating systems. Moreover, supporting multiple 
technologies is not mutually exclusive, and can provide complementary Virtual Machine 
Monitor services. One experimenter could choose to use a hypervisor-based system where one 
virtual machine would run a fully GENI-compliant container-based operating system with its 
own CM, while another experimenter could run a container-based operating system with an 
associated CM running in a separate container (e.g., a Gateway). 

A key responsibility of the VMM is to allocate resources among multiple slivers.  For resources 
that support it, the VMM implements resource reservations and proportional resource shares.  A 
reservation entitles the sliver to the reserved amount of the resource but no more.   A share 
provides a means of “over-subscribing” a resource among experiments while still providing 
some degree of fairness and isolation; a sliver’s share entitles it to best-effort access to the a 
resource in proportion to the sliver’s share divided by the sum of shares of slivers contending 
for that resource.  An experiment will subscribe for a reservation if it requires consistent access 
to that resource (e.g., for repeatability), whereas it will request a share if it can tolerate 
variability.  

3.2.1 Sharing the CPU

The VMM is responsible for scheduling multiple slivers on the component’s processors. The 
CM can assign each sliver a CPU reservation, a CPU share, or both.   A CPU reservation entitles 
the sliver to a fraction of the CPU’s capacity.  Reservations are soft real-time performance 
guarantees, meaning that the VMM makes a reasonable effort to deliver the reserved capacity to 
the sliver at a fine-grained timescale, but occasionally may not do so. A CPU reservation also 
provides an upper limit on the amount of CPU cycles that a sliver can receive; for example, a 
reservation of 10% means that the sliver will receive up to, but not more than, 10% of the CPU 
cycles on the machine.

Unresolved Issue: What sort of soft real-time performance guarantees do  
GENI experiments require?  How should the capabilities of different 
alternatives be quantified and compared?

A CPU share entitles the sliver to a share of the unused CPU capacity (i.e., unreserved CPU + 
reserved CPU not currently in use) in proportion to its numerical share.  A single sliver can 
possess both a CPU reservation and a share.  In this case, the sliver will receive its reserved CPU 
percentage plus a proportion of the unused capacity.

Unresolved Issue: What are the semantics of CPU reservations and 
shares on a multi-processor?  We expect that many GENI components 
will have more than one processor or core.
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3.2.2 Sharing the Network

Incoming packets must be de-multiplexed to the correct sliver.  If possible, the VMM associates 
a unique Layer 3 address with each sliver on the machine (e.g., an IPv6 address).  In cases 
where this is impractical, the VMM may use a single Layer 3 address for multiple slivers, and 
de-multiplex packets based on Layer 4 information (e.g., use a single IPv4 address and de-
multiplex on TCP/UDP port number).

Unresolved Issue:  How does a component implement or participate in 
per-experiment virtual topologies?

The Virtual Machine Monitor is responsible for tagging packets sent by a sliver with the sliver’s 
ID.  This information is used by the Traffic Monitor to authorize, shape, and audit the sliver’s 
outgoing traffic as described in Section 3.3.

The CM can specify the scheduling and shaping of a sliver’s network traffic; this is discussed in 
more detail in Section 3.3.2.

3.2.3 Sharing the File System

The VMM isolates slivers into different file systems, or different sub-trees of the same file 
system. A process in one sliver should not be able to read or write the files in another sliver 
without permission.

The CM can allocate a disk reservation to a sliver that both allocates a fixed amount of disk space 
to the sliver and limits it from using more than this amount.

Unresolved Issue: What is the meaning of giving a disk share to a sliver? 
What do we give to slivers that don’t require a reservation?

3.2.4 Sharing Physical Memory

The VMM is responsible for allocating the available physical memory to slivers. Memory 
consumption by one sliver should not overly affect the performance of other slivers.  The CM 
can assign each sliver a memory reservation or a share.  A memory reservation binds a fixed 
amount of physical memory to that sliver.  A memory share entitles the sliver to a proportional 
share of the unreserved physical memory on the machine.

Unresolved Issue: What are the semantics of a share of physical memory?

3.2.5 Interaction with Slivers

The CM loads a new sliver with the researchers’ credentials, and runs the appropriate software 
to provide a secure access method.

• Granting special privileges (e.g., Proper)

• Signals (e.g., reboot)
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3.2.6 Bare Hardware

The demands of an experiment may be cause the simultaneous sharing of a component with 
other GENI experiments to be undesirable or impractical.  For example, the underlying VMM 
may not be able to provide the hard real-time resource guarantees required by an experiment, 
or it may not be possible to virtualize a particular piece of hardware (such as an FPGA).  In 
these cases, the Boot Manager could be used to bootstrap an operating system directly onto the 
physical hardware that gives exclusive control to a single experiment.  For example, researchers 
who require a hard real-time operating system could boot the one of their choice on the 
machine with no virtualization layer underneath.  However, the component must still provide 
a Hardware Monitor that supports, at minimum, powering the component up and down.

Unresolved Issue: Though the assignment of bare hardware is feasible, 
scaling GENI to large numbers of experiments suggests that this practice 
should be strictly limited. How will this resource control be 
accomplished?

3.3 Traffic Monitor
The Traffic Monitor is responsible for authorizing, shaping, and auditing network traffic that is 
sent and received by a component.  While it is possible to engineer the Traffic Monitor to 
support authorization, shaping, and auditing in any order, this specific order for sent or 
received traffic is expected to impose: 1) lower overhead and 2) better time correlation for 
auditing.  Lower overhead is achieved because authorization will filter erroneous traffic (e.g., 
spoofed packets, etc.) before it reaches the other two layers.  Moreover, one can achieve better 
time correlation, as the auditing time stamp associated with a packet will be correlated with the 
actual time the packet leaves the component.

Unresolved Issue: It there a need for a Traffic Monitor to shape and audit
traffic received by a component?

While traffic monitoring for IP-based traffic is well understood, the GENI facility will support
non-IP protocols and addressing schemes that will need to be supported by the Traffic Monitor.   
The remainder of this section describes the Traffic Monitor services for IP traffic, and addressees 
certain issues related to non-IP based traffic.

3.3.1 Authorization

The Authorization subsystem of the Traffic Monitor basically is an inverted firewall. Its goal is 
to protect the global communication infrastructure from a GENI component, rather than the 
other way around. For IP-based traffic it has two basic responsibilities: 1) prevent GENI 
components from sending packets to blacklisted networks, sites, or nodes, and 2) prevent
source address/port spoofing such that the auditing subsystem can correctly associate outgoing 
traffic with the originating sliver.  This can be implemented using widely available mechanisms 
available in most modern operating systems and routers. 
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One goal of GENI is to let researchers experiment with new layer-3 protocols and addressing 
schemes.  The Traffic Monitor will not filter unrecognizable traffic that appears to be contained 
to the GENI facility networks.

Unresolved Issue: The inverted firewall could support new layer-3 
protocols if it were designed with a template based record format that lets 
it recognize new packet types. This functionality will also be required if 
new layer-3 and IP-based layer-4 protocols need to be shaped and 
audited.

3.3.2 Shaping

The Traffic Monitor’s shaping subsystem is responsible for fair sharing of bandwidth and 
enforcing bandwidth reservations.  For best effort communication, offered traffic must be 
forcibly shaped or deferred only when the network link utilization is moderate to heavy 
(approximately > 80%).  If the aggregate traffic offered by slivers is always less than the capacity 
of the communications facility and less than the aggregate of the requested bandwidth 
reservations, then all traffic is carried without invoking bandwidth-shaping mechanisms.  
However, when a communications resource becomes oversubscribed, some traffic must be 
shaped through the deferral or discarding of some part of the offered traffic.  Bandwidth 
shaping is fairly well understood and widely available in modern operating systems, switches, 
and routers. 

Unresolved Issue: Is this bandwidth shaping approach sufficient?

3.3.3 Auditing

Auditing outbound network traffic is an essential requirement for GENI, since any traffic that is 
sent by a component is a possible source of problems.  An audit trail (or log) must let the GENI 
operations staff identify the sliver that generated it.  For this reason, an auditing system must 
have the ability to bind network traffic generated by a component to a sliver (and thereby to its 
principal owner).  

The auditing subsystem will need to recognize new protocols and addressing schemes to 
properly bind traffic sent from a component to the originating sliver.  In essence, to future-proof 
the auditing system, an extensible packet recognition system is needed so researchers can define 
and register their protocols and addressing schemes.

3.4 Secure Boot Monitor

The GMC exports a Management Authority (MA) interface that is contacted by the Component 
Manager’s Boot Monitor subsystem whenever a component reboots.  Each component 
bootstraps from immutable media that instantiates a component-specific Boot Manager onto the 
component.  

The Boot Manager, in turn, contacts the MA’s Boot Server to download all necessary code and 
configuration information needed to fully boot the component.  The immutable media also 
includes a set of certificate authority (CA) certificates corresponding to well-known root public 
keys.  The Boot Monitor uses this set of CA certificates to authenticate the Boot Server.  Note 
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that the bootstrapping code and certificates can be openly distributed on a CD-ROM, for 
example, and used to securely bootstrap any component.  The certificates are GMC MA-specific, 
but not component-specific.

3.5 Hardware Monitor
Hardware sometimes fails, and there may be bugs in the component’s software stack.  The 
purpose of the Hardware Monitor is to make it as easy as possible to remotely manage and 
monitor a component given these realities.  The Hardware Monitor provides a secure method 
for the Management Authority staff to:

• power the component up and down,

• monitor the component for software and hardware errors (e.g., remote console), and

• monitor the physical state of the component (e.g., temperature sensors).

Unresolved Issue: What other features are required or likely to be useful 
for low-level remote management?

4 An Illustrative Programmable Edge Node Component
This section describes a concrete example of one component type – a PEN.  Several existing 
experimental systems (e.g., Emulab, PlanetLab) have comparable elements that inform our 
discussion. The primary purpose of this section is to illustrate how mandatory GENI-compliant 
component functions could be realized in this familiar setting. It begins with the hardware 
configuration for an Edge Server and then proceeds with a bottom-up description of a GENI-
compliant software implementation.

4.1 PEN Hardware

A typical edge node is a modern rack-mountable server consisting of the following hardware:

• modern processor (likely with multiple cores)

• 8 GB of RAM

• 1 TB of disk storage

• 2 NICs each with GigE Ethernet support

• BIOS capable of booting from USB flash media

• USB 2.0 port(s)

• System management hardware (providing remote KVM, virtual CD-Rom, temperature 
and fan speed sensors, powercycle/reboot/shutdown).
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§ Technology Illustration: Many server vendors integrate remote 
management support with their systems (e.g., Intel Intelligent 
Platform Management Interface, HP Integrated Lights Out, etc.) .

• Reliable-system support

§ Technology Illustration: Seamless process migration from one 
physical server to another is supported by virtual machine 
monitors such as Vmware and Xen, and container-based 
operating systems such as OpenVZ (a feature expected to be 
added to Linux Vservers). 

The system management hardware described above provides the Hardware Monitor subsystem 
for the PEN component.  Additionally, the edge node should provide cryptographically protected 
storage to hold the GMC MA generated share key and serve as the immutable media for the 
Secure Boot Monitor.  A straightforward method is to use a tamperproof USB key, which 
currently integrate 256-bit AES encryption directly and 256MB variants cost $20 or less.  
Alternatively, this could be accomplished via an integrated TPM (trusted platform module) chip.  

The approximate FY2006 price for such a server appropriately equipped is less than $4K (where 
the cost of dense 2G RAM sticks make up the bulk of the cost).

4.2 Component Software
4.2.1 Boot Monitor

The GMC exports a Management Authority (MA) interface that is contacted by the component’s  
Boot Monitor subsystem whenever a component reboots.

When a component is registered with the MA, a secret key is generated for that component, 
stored in an MA database, and then exported to the component as part of the component 
configuration file.  The component key can subsequently be used as a shared secret by the Boot 
Monitor to authenticate the component to the MA.  We assume that the configuration file is 
cryptographically protected in a manner that only the MA-provided Boot Manager can decrypt.

Engineering Issue: For components operated in physically insecure 
environments, it will be necessary to use additional mechanisms such as a 
secure BIOS [aegis] and TPM [tpm] to ensure secure bootstrap to the Boot 
Monitor. Without such a mechanism it would be possible for an 
unauthorized user with physical access to the component to gain access 
to the shared secret key after it has been decrypted.

Figure 3 illustrates the overall component bootstrap procedure. After a component boots (steps 
1-3), the Boot Monitor contacts the MA securely to load the Boot Manager (steps 4-6). The 
bootstrap through step 6 is secure, because the Boot Monitor uses the set of CA certificates to 
authenticate the MA’s Boot Server, downloads the Boot Manager code (e.g., using SSL), and 
validates that the cryptographic signature applied to the Boot Manager code matches the CA 
certificates before transferring control to it.  In steps 7-9, the Boot Manager reads the secret 
shared key from the immutable media, which it will use to authenticate itself to the MA’s Boot 
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Server (e.g., via HMAC) and learn what operational state it should put the component (step 10).  
The operational states include install (load all necessary code and configuration information 
onto the component’s storage media), boot (chain boot into the currently installed operating 
system), and debug (open a secure channel to let GENI operations staff debug the hardware or 
perform forensic analysis).  Assuming the component is in the install state, after installation 
completes, the Boot Manager will update the components state with the Boot Server and chain-
boot to the install operating system (steps 11-13).  Otherwise, if the node already is in boot state, 
the Boot Manager skips steps 11 and 12.  Finally, the node is fully booted in step 14 with the 
component specific production Machine Monitor, which will be described later in section 3.2.

4.2.2 Traffic Monitor

A component’s Traffic Monitor is responsible for authorizing, shaping, and auditing network 
traffic that is sent and received by a component.

Technology Illustration: Slivers on PlanetLab nodes manage shaping and 
auditing of received traffic at the application-level, while transmitted 
traffic is shaped an audited at the kernel-level.  Regardless of the decision 
on this issue, system supported shaping (e.g., Linux HTB [htb], etc.) and 
auditing (e.g., netlink-based ulogd [netlink,ulogd]) must be made 
available to slivers by the component’s VMM .

4.2.2.1 Authorization

The Authorization subsystem of the Traffic Monitor can be implemented using widely available 
mechanisms available in most modern operating systems and routers. 

Technology Illustration: IPtables can restrict destination traffic for a 
sliver on a Linux-based edge server. Modern routers (e.g, Cisco) and 
switches (Foundry with layer-3/4 packet inspection enabled) support 
traffic ACLs that can restrict destination traffic from a given source 
address/port or network interface port.

This inverted firewall should by default drop all unauthorized layer-2 traffic.  Most conventional 
components will predominately use IEEE 802.x based protocols (i.e., Ethernet) for layer-2 
connectivity (exceptions being new ideas in wireless and direct lambda access).   On untagged 
802.x networks, unauthorized traffic consists of packets with spoofed source MAC addresses.  
This can be addressed by implementing an 802.1x authentication scheme, likely leveraging the 
shared secret key that is generated when a component is registered with the GMC Management 
Authority and read in by the Boot Monitor on system boot (viz. section 3.4).

On 802.1q tagged (VLAN-based) networks, unauthorized traffic consists of packets sent by 
components with VLAN tags that are outside the membership list associated to the port on the 
switch/router to which the component is connected.

Unresolved Issue: VLANs labels are scarce resources due to their 12-bit 
address space.   Letting slivers dynamically join/leave VLANs will need 
to be carefully managed and limited. An alternative approach is to define 
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all layer-2 networks that slivers can address using Multi-Protocol Label 
Switching (MPLS), which sits between layer-2 and layer-3 (in that it is 
independent of the layer-2 definition).  MPLS assigns each packet a stack 
of labels, with each stack entry supporting a 32-bit label (of which 20 bits 
are available for defining the label space), which should suffice for 
managing a large number of virtual networks.

4.2.2.2 Traffic Control and Shaping

The Traffic Monitor’s shaping subsystem is responsible for fair sharing of bandwidth and 
enforcing bandwidth reservations.  For best effort communication, offered traffic must be 
forcibly shaped or deferred only when the network link utilization is moderate to heavy 
(approximately > 80%).  If the aggregate traffic offered by slivers is always less than the capacity 
of the communications facility and less than the aggregate of the requested bandwidth 
reservations, then all traffic is carried without invoking bandwidth-shaping mechanisms.  
However, when a communications resource becomes oversubscribed, some traffic must be 
shaped through the deferral or discarding of some part of the offered traffic.  Bandwidth 
shaping is fairly well understood and widely available in modern operating systems, switches, 
and routers. 

Technology Illustration: The Linux kernel incorporates a hierarchical 
token bucket system that can be used to shape and prioritize layer-2 to 
layer-4 traffic.  For example, PlanetLab nodes use this mechanism to both 
ensure fair sharing and guarantee reservations.

Technology Illustration: An Ethernet switch supporting VLAN 
technology can be configured to impose bandwidth limits on a per 
interface basis.

Of course, only recognizable traffic can be shaped.  For new layer-3+ protocols / addressing 
schemes that are not recognized by the shaping subsystem, we assume that the traffic is 
contained within a VLAN (and enforced by the inverted firewall) and fair sharing / 
reservations is applied at layer-2.

Unresolved Issue: The degree of support for real-time traffic has not been 
determined.  Hard and soft real-time are marked by the specification of 
deterministic or statistical service guarantees. A mechanism must be 
developed to create virtual links that are appropriately over provisioned 
with a guarantee that aggregate bandwidth going over such a link avoids 
the need for bandwidth shaping.  It is unclear what (if anything) must be 
done to properly support soft real-time communication.

4.2.2.3 Auditing

As discussed earlier, auditing network traffic is an essential requirement for GENI.   Any traffic 
that is sent by a component is a possible source of problems.  An audit trail (or log) must let the 
GENI operations staff identify the sliver that generated it.  For this reason, an auditing system 
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must have the ability to bind network traffic generated by a component to a sliver (and thereby 
to its principal owner).  

For IP-based traffic, auditing is well understood.  For example:

Technology Illustration: PlanetFlow [OSR] and Cisco’s NetFlow log the 
header of each IP-based packet sent by a component and classifies the 
packets into flows, using a 5-tuple of <source IP, source port, destination 
IP, destination port, protocol>.  These tuples are augmented with start 
and end times, total number of packets, and total number of bytes.  
PlanetFlow augments the start and end times of such tuples with a sliver 
identifier, which thereby lets one attribute traffic to a specific sliver on 
hosts where multiple slivers share a single IP address. PlanetFlow does 
not keep track of the precise timing of each packet, other than the first 
and last packets within a session---please see [OSR] for details.

The auditing subsystem will need to recognize new protocols and addressing schemes to 
properly bind traffic sent from a component to the originating sliver.  In essence, to future-proof 
the auditing system, an extensible packet recognition system is needed so researchers can define 
and register their protocols and addressing schemes.

Technology Illustration: Cisco’s NetFlow traffic logging system utilizes a 
template-based record format that lets it recognize new layer-3+ packet types.

4.2.3 Virtual Machine Monitor

The Virtual Machine Monitor supports the multiplexing, isolation and security and privacy, and 
component-specific performance requirements of a GENI-compliant component.

A hypervisor such as Xen provides maximal flexibility in that they provide the abstraction of 
the raw hardware to each experiment.  It also provides strong isolation between experiments, as 
dedicated hardware resources can be assigned to each experiment.  A drawback is that these 
systems come with a very limited programming environment; in theory experimenters would 
essentially be given little more than virtualized bare hardware, though in practice most 
experimenters will likely go with a variant of XenoLinux slightly modified for their experiment.  
Another drawback is that each sliver in a Xen VM would need to obtain a globally unique IPv4 
address until some solution is developed to share such an IPv4 address between VMs, as was 
done for PlanetLab’s container-based operating system (Linux Vserver) using VNET [VNET].

Another possible solution for the Virtual Machine Monitor on an edge server is a container-
based operating system (e.g., Linux Vservers, Sun’s OpenSolaris 10, or OpenVZ), which 
provides each experimenter the illusion of a virtual dedicated Unix operating system with root 
permission.  Software inside these container-based systems prevents each container (i.e., a 
sliver) from exceeding its privileges. Soltesz et al. [Soltesz] demonstrate that Linux Vservers 
provides strong isolation, better scalability, and better performance compared to Xen, especially 
when it comes to networking and disk i/o related benchmarks. Moreover, Bavier et al. [VINI] 
demonstrate that soft real-time scheduling on Linux Vservers can be used to achieve low 
latency network packet forwarding on shared systems that are under moderate to heavy load. 
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But performance isolation is potentially limited as Vservers makes an intentional design 
decision to share the buffer cache (unlike Xen), which opens it up to cache poising attacks.  The 
main drawback of using a containerized approach is that researchers cannot insert kernel 
modules.

Engineering Issue: Approaches like Vservers and Xen each provide their 
own levels of resource isolation, e.g., though resource scheduling and 
partitioning.  We must be able to measure the provided isolation along 
different dimensions, with the goal of enabling as much of an “apples-to-
apples” comparison as possible.

4.2.3.1 Bare Edge Node Hardware

Rather than running an arbitrary operating system within a virtual machine, the Boot Manager 
could be used to bootstrap such an OS directly onto the physical hardware. This would be 
useful to researchers who want to experiment with hard real-time operating systems, as they 
would obtain complete control of the physical hardware.  This approach requires the 
association of a second resource to serve as the physical machine’s CM, implementing traffic 
management, auditing, remote management, etc services in support of the bare edge server.
Since additional resources are required in support of bare edge node hardware, we anticipate 
that the availability of bare hardware will be initially limited to compute elements (e.g., blades) 
within Programmable Edge Clusters.

Technology Illustration: Cluster management systems (e.g., Rocks) by 
default isolate their compute nodes from the public network, such that all 
of their traffic must go through “head” node. This head node acts as 
router, NAT, and firewall.  A similar concept can be used in GENI to 
authorize, shape, and audit traffic from a bare edge server.

4.2.4 Component Manager

The Component Manager is a daemon that runs in a privileged virtual machine on top of the 
VMM.  

4.2.5 Instrumentation and Measurement Support

The facility supports the creation of GENI-compliant measurement components that provide 
component-specific measurement services to experimenters. In addition, self-instrumentation of 
non-measurement components (e.g., programmable edge router) is both supported and 
encouraged.

As an example, the GENI edge server components can incorporate an optional network 
instrumentation element (e.g., Endace DAG 1GigE card). This type of hardware -- already in use 
by the ETOMIC subproject of the EU’s EVERGROW Integrated project -- would let researchers 
carry out network measurements between geographically distributed sites with high temporal 
resolution (~10 nanoseconds) that is globally synchronized.  It would provide GENI with a high 
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resolution, spatially extended dynamic picture of fast changes in network traffic, thereby open 
up new kinds of network tomography.

Unresolved Issue: The cost of universal deployment of these 
instrumentation cards might be prohibitive, though deployment on a per-
site basis might be feasible. A resource scheduling mechanism should 
permit researchers conducting timing experiments to get higher priority 
to share components equipped with optional measurement elements.

5 An Illustrative GENI Site
5.1 Example of a Complex GENI Site
In this section we present a concrete example of a complex GENI site. A GENI site has one or 
more co-located GENI components with common locally administration. Though this section 
serves to illustrate how some of the mandatory GENI-compliant component functions could be 
realized, its primary purpose is to expose system-level design issues and highlight how 
mandatory functions address these challenges.

We expect the GENI facility to grow to 100-200 edge sites, each of which will host a 
programmable edge cluster (PEC) component. These PECs will vary in complexity from two or 
three processors connected by a low-end commodity switch to a large cluster potentially 
including hundreds of processors and a high-performance network interconnect. Each site will 
be connected to the backbone by at least one tail circuit to a backbone PoP. These tail circuits will 
exploit a wide range of technologies, including dedicated fiber, leased layer-2 circuits, and 
tunnels through the commodity Internet. Each PEC will also be connected to the commodity 
Internet via whatever connectivity is provided by the hosting site.

Figure 3 depicts a site containing N+2 GENI-compliant components: a programmable edge 
cluster (in this case a single bladed chassis supporting N edge servers), a standalone edge 
server, and a programmable access point.  Each GENI-compliant component has an associated 
CM, which is either implemented entirely locally or distributed across physical resources. Each 
edge server on a PEC blade runs a CM, as does the standalone edge server. The access point 
supports a distributed CM; the AP relies on a dedicated PEC blade to run certain CM functions 
that are not supported locally.



GENI Component Reference Design           3 November 2006 (Version 0.76)

Figure 3: A representation of a complex GENI site.

The depicted GENI site also contains additional computing and networking resources including

• VLAN switch – This device serves as the principal local interconnect for the site’s GENI 
components. It is controlled, in part, by the CMs of locally attached components. For 
example, a CM might issue a command to the switch to impose a bandwidth limitation on 
the amount of egress traffic on the switch’s port to the Edge Router.

• Edge Router – This device is a conventional COTS router used to connect the GENI site to 
access networks. This is not a GENI-component, and hence not programmable by 
experimenters. The ER is administered by local site administration.

• Web Server – This device is representative of non-GENI computing or networking 
equipment that might be co-located at the site. This device shares at least one access 
network through the ER with the GENI components on site. Site administration is 
responsible for ensuring isolation of these resources from GENI components.

Multiple communication links connect the site to external access networks. In general, a 
CM audits and controls access to external networks on a per link basis.
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The basic hardware building blocks for GENI sites include edge servers, Ethernet switches for 
intra-site connectivity, and routers for inter-site connectivity. Switches and routers are 
constructive examples of site elements that can be exploited to implement certain CM functions 
such as Traffic Management. The next section provides some high-level requirements on 
Ethernet switches that can facilitate site and component design; a similar set of requirements 
can be identified for COTS routers.

5.1.1 Ethernet Switch

A Gigabit Ethernet switch should have the following capabilities:

• >= 48 port copper 1GigE switch. Note that a canonical GENI cluster will likely have 20 
servers with two NICs each.

• two (2) 10GigE uplink ports. For a 20-server cluster, provide each with full 1GigE 
up/down bandwidth to the backbone.

• VLAN (auto-configuration and QoS bandwidth support): a switch supporting VLAN 
technology with QoS bandwidth management will enable one to attach a non-GENI 
compliant component in a manner that it cannot see or affect traffic belonging to GENI-
compliant components, and more importantly can be forced to send traffic thru at least 
one local GENI-compliant component (e.g., a sliver running on a compliant edge server) 
in order to communicate with the rest of GENI.

• secure remote management interface (e.g., https, ssl): remote management support will 
let operations staff configure the switch remotely. More importantly, a Component 
Manager’s Traffic Monitor could securely program the switch to enforce bandwidth 
limits for VLANs associated to slivers.

Examples of switches that have these capabilities are the Foundry FastIron WorkGroup Switch 
X448 and the HP ProCurve 3400cl-24G + cl 10-GbE CX4 module. The general retail price range 
for such a switch is less than $10K, which includes the (expensive) two-port 10GigE uplink 
module.

6 Related Topics
6.1 GENI Gateway
A component’s Traffic Monitor is responsible for authorizing, shaping, and auditing the 
component’s network traffic (Section 4.2.2).

In some settings it is advantageous to have a single Traffic Monitor perform traffic management 
functions for multiple components. For example, it might be desirable for a single TM to 
consolidate and perform traffic management services for all of the components at a small GENI 
site. In such a case, a desirable location for the consolidated TM function would be at a ‘choke 
point’ where the site connects to access networks (e.g., a GENI tail circuit, or the internet).

A GENI Gateway refers to the logical set of functions that implement cross-component TM 
services at a choke point.
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As a simple example, consider the GENI site depicted in Figure 3. In one possible 
implementation, each node in the programmable edge cluster could itself operate as a separate 
component (i.e., forming N PENs) and run a separate, local Traffic Monitor function. This 
implementation is similar to that deployed by Planetlab nodes, where each of multiple nodes at 
a site separately performed traffic management functions.

However, an alternative implementation could consolidate these functions. For example, TM 
functions for the entire set of components could be implemented primarily within the ethernet
switch, with the nodes’ CMs controlling the creation of VLANs and native switch-based traffic 
control services. The ‘choke point’ in this setting is the switch port connecting the site to the 
internet.

In this example the GENI gateway is a logical set of traffic management functions distributed 
across CMs and the Ethernet switch. This example highlights that a gateway 1) is not a 
mandatory site element, and 2) is not a separate, physical device.

6.2 Aggregate Components

An aggregate component is a set of GENI-compliant components that can be referenced with a 
single, unique identifier. An aggregate facilitates interactions with multiple components. A 
possible use of an aggregate is to jointly manage or use a set of components that share a 
common property; examples might include all the edge servers in a single PEC (e.g., blades in a 
single chassis), or all components at a specified site. An Aggregate Manager (AM) plays a role 
comparable to a CM in managing the aggregate.

6.3 Making a Component GENI-Compliant
We anticipate that the research community will develop novel components that would benefit 
the GENI community if integrated with GENI facility. The decision to add such a component to 
the facility is granted by a GENI management authority and is beyond the scope of this 
document. Here, however, we sketch a technical approach to enable an arbitrary component to 
be enhanced to compliance.

The initial step to GENI-compliance is to satisfy the mandatory isolation, multiplexing, and 
network traffic management requirements of Section 2.  Satisfaction of these requirements will 
depend, in general, on the component type and component performance limitations. For 
example, suppose a developer would like to enhance a programmable wireless access point to 
achieve GENI compliance. Three approaches may be considered:

1. The desired component’s core function may be added to an existing GENI-compliant 
component.

i. Technology Illustration: A core function implemented as an 
expansion card can be integrated within a PEN and made visible 
from a sliver.
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2. The component may be modified to incorporate the CM software stack to realize GENI-
compliance.

3. The component may be associated with other resources running services on its behalf to 
realize compliance. For example, the component might rely on a CM running as a VM in 
another component.
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