
Wireless Network: JTechs
Password: Summer2012

URL for Slides:

http://tinyurl.com/JT-Stanford

copyright Indiana
University

Openflow in a day

Indiana Center for Network Translational Research and Education

the research arm of

http://incntre.iu.edu
http://globalnoc.iu.edu

Instructors
Steven Wallace

ssw@iu.edu

Chris Small
chsmall@iu.edu

Brent Sweeny
sweeny@indiana.edu

John Hicks
jhicks@iu.edu

Brent Salisbury
brent@uky.edu

Tools that we'll be using today...

Open VSwitch - the OpenVSwitch distribution
includes an OF controller (i.e., ovs-controller)
and a useful command-line utility ovs-ofclt.

FlowVisor - FV supports the virtual "slicing" of
OF networks.

WireShark - an open source network "sniffer"

http://openvswitch.org/
https://openflow.stanford.edu/display/DOCS/Flowvisor
http://www.wireshark.org
http://www.wireshark.org

Forward looking statement...

OpenFlow is still new.

The exercises will be using beta software and
firmware (we'll be rebooting things frequently).

This is our fifth OpenFlow Workshop. Based on
student input, and changes in the OpenFlow
environment, each one has been substantially
different. Feedback will inform future
workshops!

Teaching HTML to explain the WWW

OpenFlow's promise is its application,
not its internal workings

Yet much of today is about OpenFlow's internal
workings, and very little will be polished
examples of its application.

What is required to fully participate

Laptop with Internet connection

ssh client & x-windows server
(window users can use PuTTY)

competency with Ethernet switching

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Logistics

Up to 17 teams of two students each
e.g., VM-1-A and VM-1-B are a team.

Each student will login to his/her own VM. Each VM has
four interfaces. Eth0 is the interface for remote access.
● ssh -X openflow@[IP Address of your Eth0] (do this

twice to open two windows)
● Password "indianajt"

%p

Logistics
Go ahead and ssh to your VM.

Once you're connected, make sure your x
server is running first, then run wireshark:

sudo wireshark &
Select ok in popup box to run Wireshark as root

Configure wireshark:
1. sniff on Eth1
2. filter type "of"

Logistics

A bit more about the VM configuration:

Eth0 - remote access (place you ssh to)

Eth1 - OpenFlow channel

Eth2 & Eth3 are connected to ports on the
OpenFlow switch. These will be used to test the
effect of putting OpenFlow rules in the switch.

Rough Agenda

Logistics (the part we just did)
OpenFlow's value
OpenFlow's origin
OpenFlow's owner
OpenFlow's oxygen
OpenFlow (the details)
Hands-on with OpenFlow
Whiteboard exercises, if OF was your only tool, how
would you solve these problems: Bonjour printing, moving
magic packets, and preventing dsniff man-in-the-middle.

OpenFlow's Value

Enterprise
Data Center
WAN

What can OpenFlow bring to the
enterprise

● Automated configuration of new equipment in your
enterprise network (think controller-based wireless)

● Choose from a marketplace of solutions for common
network requirements (e.g., PCI-DSS compliance, NAC
network access control, etc.)

● Delegate control of network slices to their proper
steward (e.g., CCTV, door locks, etc.)

● Address new requirements (e.g., bonjour printing, guest
access, BYOD) through new software, not new
equipment

What can OpenFlow bring to the
data center

● Standard API for network provisioning (i.e.
orchestration)

● Integration with VM-based switches (e.g. Open vSwitch)
● New network behaviors that permit scaling to million-VM

data centers
● Potential for ODMs to provide more cost effective

solutions

What can OpenFlow bring to the
wide area network

● Standard API for network provisioning of bandwidth-on-
demand services (e.g. Internet2 OS3E)

● Standard API upon which to address new requirements
(e.g. lawful intercept)

● Delegate control of network slices upon which arbitrary
virtual networks can coexist on a common network
platform

OpenFlow Origin

Clean Slate Program at Stanford
○ Early work on SANE circa 2006 (security

architecture)
○ inspired Ethane circa 2007, which lead to OpenFlow

2009 Stanford publishes OF 1.0.0 spec
2009 Nicira Series A funding
2010 Big Switch seed funding
2011 Open Network Foundation is created
2012 Google announces migration to OF
(migration started in 2009)

http://cleanslate.stanford.edu/
http://cleanslate.stanford.edu/
http://yuba.stanford.edu/sane/
http://yuba.stanford.edu/~casado/ethane-sigcomm07.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://nicira.com/
http://www.bigswitch.com/
https://www.opennetworking.org/
http://www.youtube.com/watch?v=VLHJUfgxEO4

OpenFlow's Owner:
Open Networking Foundation

ONF members:
A10 Networks, Alcatel-Lucent, Argela, Big Switch Networks, Broadcom,
Brocade, Ciena, Cisco, Citrix, Colt, Comcast, CompTIA, Cyan, Dell,
Deutsche Telekom, Elbrys, Ericsson, ETRI, Extreme Networks, EZchip,

F5, Facebook, Force10 Networks, France Telecom Orange, Fujitsu,

Gigamon, Goldman Sachs, Google, Hitachi, HP, Huawei, IBM, Infinera,
Infoblox, Intel, IP Infusion, Ixia, Juniper Networks, Korea Telecom, LineRate
Systems, LSI, Luxoft, Marvell, Mellanox, Metaswitch Networks, Microsoft,
Midokura, NCL Communications K.K., NEC, Netgear, Netronome, Nicira
Networks, Nokia Siemens Networks, NTT Communications, Oracle,
PICA8, Plexxi Inc., Radware, Riverbed Technology, Samsung, SK Telecom,
Spirent, Telecom Italia, Tencent, Texas Instruments, Vello Systems, Verizon,

VMware, Yahoo, ZTE Corporation --- Board Members

http://www.a10networks.com/
http://www.alcatel-lucent.com/
http://www.argela.com/
http://www.bigswitch.com/
http://www.broadcom.com/
http://www.brocade.com/
http://www.ciena.com/
http://www.cisco.com/
http://www.citrix.com/
http://www.colt.net/
http://www.comcast.com/
http://www.comptia.com/
http://www.cyaninc.com/
http://www.dell.com/
http://www.telekom.com/
http://www.elbrys.com/
http://www.ericsson.com/
http://www.etri.re.kr/eng/
http://www.extremenetworks.com/
http://www.ezchip.com/
http://www.f5.com/
http://www.facebook.com/
http://www.force10networks.com/
http://www.force10networks.com/
http://www.orange.com/en_EN/
http://www.fujitsu.com/
http://www.gigamon.com/
http://www.goldmansachs.com/
http://www.google.com/
http://www.hitachi.com/
http://www.hp.com/
http://www.huawei.com/
http://www.ibm.com/
http://www.infinera.com/
http://www.infoblox.com/
http://www.intel.com/
http://www.ipinfusion.com/
http://www.ixiacom.com/
http://www.juniper.net/
http://www.kt.com/eng/
http://www.lineratesystems.com/
http://www.lineratesystems.com/
http://www.lsi.com/
http://www.luxoft.com/
http://www.marvell.com/
http://www.mellanox.com/
http://network-technologies.metaswitch.com/
http://www.microsoft.com/
http://www.midokura.jp/
http://www.nclc.co.jp/
http://www.nec.com/
http://www.netgear.com/
http://www.netronome.com/
http://www.nicira.com/
http://www.nicira.com/
http://www.nsn.com/
http://www.ntt.com/
http://www.oracle.com/
http://www.pica8.com/
http://www.plexxi.com/
http://www.radware.com/
http://www.riverbed.com/
http://www.samsung.com/
http://www.sktelecom.com/eng/index.html
http://www.spirent.com/
http://www.telecomitalia.com/
http://www.tencent.com/en-us/
http://www.ti.com/
http://www.vellosystems.com/
http://www.verizon.com/
http://www.vmware.com/
http://www.yahoo.com/
http://wwwen.zte.com.cn/en/
http://www.vmware.com/

Open Networking Foundation

Membership-based 30K a year.
Members agree to share IP on reasonable
terms.
Working group evolve the standard.
Not like IETF, ITU, IEEE, etc.

OpenFlow's Oxygen

(hype is adrenaline, not oxygen)

Large data center operators can roll their own. They make their own servers,
their own data center designs, and their own software. Offer them a standard
protocol that provides fine-grain control of COTS network hardware, they will
supply lots of oxygen. Examples include:

if “Floor Plan Entropy” has got your bisection bandwidth down, build fat tree
networks based on low-cost switches by programming the network for the data
center via Openflow (e.g., PortLand)

if network provisioning is slow and manual, leverage an open network API to
create better orchestration

http://afitc.gunter.af.mil/2011Presentations/SeminarSessions/Juniper_NextGenerationDataCenter.pdf
http://www.cs.washington.edu/education/courses/csep524/99wi/lectures/lecture7/sld006.htm
http://www.cs.washington.edu/education/courses/csep524/99wi/lectures/lecture7/sld006.htm
http://cseweb.ucsd.edu/~vahdat/papers/portland-sigcomm09.pdf
http://cseweb.ucsd.edu/~vahdat/papers/portland-sigcomm09.pdf
http://en.wikipedia.org/wiki/Orchestration_(computing)
http://en.wikipedia.org/wiki/Orchestration_(computing)

Reducing the oxygen requirement

Merchant Silicon: “off the shelf” chips that perform
packet processing at high speed vs. vertically integrated
custom designed chips designed & built by switch vendors.
Q: What do the following have in common:
Juniper QFX3500, IBM BNT RackSwitch G8264, Alcatel-
Lucent OminiSwitch 6900, Cisco Nexus 3064, HP 5900AF
48XG, Dell Force 10 S4810, and Arista 7050S-64?
A: Broadcom silicon.
ODMs (Original Design manufacturer) have their own
design, typically based on merchant silicon.

http://etherealmind.com/analysis-merchant-custom-silicon/
http://www.wired.com/wiredenterprise/2012/03/google-microsoft-network-gear/all/1

What is OpenFlow?

● It's a protocol for control the forwarding
behavior of Ethernet switches in a Software
Defined Network

● Initially released by the Clean Slate Program
at Stanford, its specification is now
maintained by the Open Networking Forum

● Most of today's material is based on the
OpenFlow 1.0 specification

● As of now, the specification has advanced to
OpenFlow 1.3

http://www.technologyreview.com/web/22120/
http://www.technologyreview.com/web/22120/
http://www.technologyreview.com/web/22120/
http://cleanslate.stanford.edu/
https://www.opennetworking.org/
https://www.opennetworking.org/documents
https://www.opennetworking.org/documents

Ethernet Switch

Table-based (e.g., TCAM/CAM) high-speed forwarding engine

Embedded Operating System

Data Plane

Control Plane

Features Value Add

CLI, SNMP, TFTP

OpenFlow Controller

Table-based (e.g., TCAM/CAM) high-speed forwarding engine

Embedded Operating System implements OpenFlow

Data Plane

Control Plane

Features
Value Add

OpenFlow Protocol

OpenFlow Controller
Features

Value Add

OpenFlow Protocol
Each switch

connects directly with
OF Controller

Flow Table

Header Fields Counters Actions

Ingress Port
Ethernet Source Addr

Ethernet Dest Addr
Ethernet Type

VLAN id
VLAN Priority

IP Source Addr
IP Dest Addr
IP Protocol

IP ToS
ICMP type
ICMP code

Per Flow Counters
Received Packets
Received Bytes

Duration seconds
Duration nanosecconds

Forward
(All, Controller, Local,
Table, IN_port, Port#

Normal, Flood)

Enqueue
Drop

Modify-Field

Priority

Required Per Spec

Flow Table

Header Fields Counters Actions

If ingress port == 2 Drop packet

if IP_addr == 129.79.1.1 re-write to 10.0.1.1, forward
port 3

if Eth Addr == 00:45:23 add VLAN id 110, forward
port 2

if ingress port == 4 forward port 5, 6

if Eth Type == ARP forward CONTROLLER

If ingress port == 2 && Eth
Type == ARP forward NORMAL

Priority

32768

32768

32768

32768

32768

40000

Special Ports

Controller (sends packet to the controller)

Normal (sends packet to non-openflow function
of switch)

Local (can be used for in-band controller
connection)

Flood (flood the packet using normal pipeline)

Flow Table

Header Fields Counters Actions

If ingress port == 2 Drop packet

if IP_addr == 129.79.1.1 re-write to 10.0.1.1, forward
port 3

Priority

32768

32768

Each Flow Table entry has two timers: idle_timeout
seconds of no matching packets
after which the flow is removed

hard_timeout
seconds after which the flow is
removed

If both idle_timeout and hard_timeout are set, then the flow is removed when the first of the two expires.

Populating the Flow Table

Proactive
Rules are relatively static, controller places
rules in switch before they are required.

Reactive
Rules are dynamic. Packets which have no
match are sent to the controller (packet in).
Controller creates appropriate rule and
sends packet back to switch (packet out) for
processing.

Example application:
topology discovery

OpenFlow Controller

Bootstrapping a new switch

Switch requires minimal initial configuration (e.
g., IP address, default GW, and OpenFlow
controller)

Switch connects to controller. Controller
requests things like a list of ports, etc.

Controller proceeds to determine the switch's
location.

Bootstrapping a new switch

Controller proactively places a rule in the switch.

If ether_type = LLDP, actions=output:controller

Then the controller creates an LLDP packet, sends it to the
switch, and instructs the switch to send it out a port (repeat
for all ports).

Since all switches in the controller's network have a rule to
send LLDP packets to the controller, the controller is able
to determine the topology.

OpenFlow 1.0 to 1.1

Flow Table
Header Fields Counters Actions Priority

Match Fields Priority Counters Instructions Cookie

1.0

1.1

media data packet Action Set

New Data Structure in Pipeline

Group ID Type Counters Action
Buckets

.....

.....

Packet Processing

1.0
Does packet match flow table entry, if so,

perform action.

1.1
Does packet match flow table entry, if so,

look at instructions...

Actions vs. Instructions

1.1
● Flow entries contain instructions.
● Instructions may be immediate action(s), or
● instructions may set actions in the action set
● Instructions can also change pipeline

processing:
○ Goto table X
○ Goto group table entry x

More Tables

1.1

● Allows for multiple flowtables
● Includes a group table with multiple group

table types
● Instructions can jump to other tables, but

only in a positive direction

OpenFlow QoS

OF 1.0
● Optional action "Enqueue"

Forwards packet through a queue attached
to a port. The behavior of the queue is
determined outside the scope of OF.

● Header fields can include VLAN priority and
IP ToS, so they can be matched against and
re-written.

OpenFlow QoS

OF 1.3
● Stuff from 1.0
● New table "Meter Table"

Meter Identifier Meter Bands Counters

32 bit integer
used to identify the meter

list of meter bands
each band specifies rate and behavior

OpenFlow QoS (1.3 cont.)

Meter Identifier Meter Bands Counters

Match Fields Priority Counters Instructions TimeoutsTimeouts Cooke

New instruction
Meter meter_id

Band Type Rate Counters Type Specific Arguments

drop
or

remark DSCP
kb/s
burst

OpenFlow QoS (1.3 cont.)

Meter Identifier Meter Bands Counters

Band Type Rate Counters Type Specific Arguments

drop
or

remark DSCP
kb/s
burst

One or more Meter Bands
 per Meter Table Entry

"the meter applies the meter band
with the highest configured rate
that is lower than the current
measured rate"

OpenFlow QoS (1.3 cont.)

Matching Flow Table Entry
Includes instruction:

 apply Meter ID

Collect Stats /
Determine

which Meter
Band Applies

Drop Packet
Collect Stats

If band type
drop?Remark ToS

Collect Stats

If band type
remark?

Hands-on with OpenFlow
(quick review of the table)

Header Fields Counters Actions

Ingress Port
Ethernet Source Addr

Ethernet Dest Addr
Ethernet Type

VLAN id
VLAN Priority

IP Source Addr
IP Dest Addr
IP Protocol

IP ToS
ICMP type
ICMP code

Per Flow Counters
Received Packets
Received Bytes

Duration seconds
Duration nanosecconds

Forward
(All, Controller, Local,
Table, IN_port, Port#

Normal, Flood)

Enqueue
Drop

Modify-Field

Priority

Hands-on with OpenFlow
(switch config)

● HP switches run in hybrid Openflow mode
○ can act as a regular switch or as an openflow switch
○ implemented on a per VLAN basis or aggregation

mode
○ capable of running multiple openflow instances
○ openflow capabilities:

HP Switch Configuration

● Enter configuration mode
○ # configure

● Create a VLAN for your Openflow instance
○ # vlan 10

● Add ports to the VLAN
○ In our case we have untagged traffic coming in on

ports 1-20
■ untagged 1-20

○ Port 21 is used for management, 23-24
interconnects
■ # tagged 21
■ # tagged 23-24

HP Switch Configuration

● Currently we have a VLAN with the ports we
need. The configuration looks like this:

vlan 10
name "VLAN10"
untagged 1-20
tagged 21,23-24
no ip address
exit

HP Switch Configuration

● Now to enable Openflow on the VLAN
○ # openflow vlan 10 enable

● Tell the Openflow instance to actively
connect to an Openflow controller
○ # openflow controller tcp:10.101.1.39:6633
○ 6633 is the port that is listening on the controller

● If the switch can't connect to the controller,
we want the switch to forward using current
rules

● # openflow fail-secure on

HP Switch Configuration

● Lastly, we want the ability to manually
connect to the switch to check and set state
○ the openflow instance on the vlan will be listening on

port 6633 for dpctl ovs-ofctl commands
■ # openflow listener ptcp:6633

○ Limit the listener to a specific IP address
■ # openflow listener ptcp:10.101.1.210:6633

(to see status of listener port and state for vlan 10: "show openflow 10")

Actual Switch Configuration
Running configuration:

; J9470A Configuration Editor; Created on release #K.15.06.5008
; Ver #02:10.0d:1f

hostname "sw-1"
time timezone -300
time daylight-time-rule Continental-US-and-Canada
module 1 type J94ddA
vlan 1
 name "DEFAULT_VLAN"
 untagged 22
 no untagged 1-21,23-24
 no ip address
 exit
vlan 2
 name "VLAN2"
 untagged 21
 ip address 10.101.1.101 255.255.255.0
 exit
vlan 10
 name "VLAN10"
 untagged 1-20
 tagged 21,23-24
 no ip address
 exit
openflow
 vlan 10
 enable
 controller "tcp:10.101.1.50:6633" listener "ptcp:6633" fail-secure on
 exit
 exit
snmp-server community "public" unrestricted

Hands-on with OpenFlow

OpenFlow Controller

No
rm

al
ly

sw
itc

h
in

itia
te

s
a

 c
on

ne
ct

io
n

to
 it

s
co

nt
ro

lle
r

Although not part of the OF spec, many
switches support a passive OF connection,
where the switch listens for a connection.

VM-A-1

We're going to use ovs-ofctl to query
the switch's status.

A bit about ovs-ofctl

● packaged with openvswitch-common
● alternative to dpctl (openflow reference

controller)
● command-line utility that sends basic

Openflow messages
○ useful for viewing switch port and flow stats, plus

manually inserting flow entries
○ tool for early debugging

● Talks directly to the switch
○ This does not require a controller

● Switch must support a listener port

First Step!

● Wireshark is running?
● Run:

○ $ ovs-ofctl show tcp:10.101.1.10X:6633
■ The 'show' command connects to the switch and

prints out port state and OF capabilities
● What were the results?
● What do you see via wireshark?
● View Openflow rules on the switches at

○ http://workshop.incntre.iu.edu/flows/

http://workshop.incntre.iu.edu/flows/
http://workshop.incntre.iu.edu/flows/

ovs-ofctl - show

$ ovs-ofctl show tcp:10.101.1.10X
OFPT_FEATURES_REPLY (xid=0x1): ver:0x1, dpid:000a2c27d7772d80
n_tables:2, n_buffers:256
features: capabilities:0x87, actions:0x7ff
 1(1): addr:2c:27:d7:77:2d:bf
 config: 0
 state: 0
 current: 100MB-FD AUTO_NEG
 supported: 10MB-HD 10MB-FD 100MB-HD 100MB-FD AUTO_NEG
 2(2): addr:2c:27:d7:77:2d:be
 config: 0
 state: 0
 current: 100MB-FD AUTO_NEG
 supported: 10MB-HD 10MB-FD 100MB-HD 100MB-FD AUTO_NEG

ovs-ofctl dump-flows

● ovs-ofctl dump-flows tcp:10.101.1.10X
○ Gives us information about the flows installed
○ Rule itself
○ Timeouts
○ Actions
○ Packets and bytes processed by flow

ovs-ofctl dump-flows

$ ovs-ofctl dump-flows tcp:10.101.1.10X
1. NXST_FLOW reply (xid=0x4):
2. cookie=0x0, duration=30.625s, table=4, n_packets=0,
n_bytes=2612, idle_timeout=180,priority=33000,in_port=1
actions=output:2
3. cookie=0x0, duration=22.5s, table=4, n_packets=0,
n_bytes=2612, idle_timeout=180,priority=33000,in_port=2
actions=output:1

ovs-ofctl dump-ports

$ ovs-ofctl dump-ports tcp:10.101.1.10X
- Gives physical port information
- Rx, tx counters
- Error counters

1. OFPST_PORT reply (xid=0x1): 14 ports
2. port 2: rx pkts=25211, bytes=3856488, drop=0, errs=0,
frame=0, over=0, crc=0tx pkts=7144, bytes=767594,
drop=0, errs=0,coll=0
3. port 5: rx pkts=18235, bytes=3142702, drop=0, errs=0,
frame=0, over=0, crc=0tx pkts=0, bytes=0, drop=0, errs=0,
coll=0

ovs-ofctl del-flows

● we can remove all or individual flows from
the switch

● $ ovs-ofctl del-flows match
○ ex. $ ovs-ofctl del-flows tcp:10.101.1.101

dl_type=0x800
○ ex. $ ovs-ofctl del-flows tcp:10.101.1.101 in_port=1

Exercise #1

Using ovs-ofctl to insert simple, port-based
rules

Do the pings work?

What do you see with
ovs-ofctl dump-flows tcp:10.101.1.10X?

Wireshark?

Do the counters increase as expected?

What's going on with the timeouts?

Exercise #2 - Moving up the stack...

First rule was port-based.

Next rule is IP source address-based.

Do the pings work?

Did the port-based rules time out?

If there are no port-based rules, why would the
pings fail?

Can you verify this hypothesis by looking at the
counters?

Exercise #3 - uses an OF controller...
but we have to introduce FlowVisor
first...
The practical reason we're using FlowVisor at
this point is to provide enough virtual OpenFlow
switches so that each student can operate his
own OpenFlow controller.

FlowVisor

FlowVisor

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

Switches think they're
connecting to controller

Controllers think they're
connecting to switches

FlowVisor

Header Fields

Ingress Port
Ethernet Source Addr

Ethernet Dest Addr
Ethernet Type

VLAN id
VLAN Priority

IP Source Addr
IP Dest Addr
IP Protocol

IP ToS
ICMP type
ICMP code

Uses to Create "Slices"

VM-1-B
OF controller

slices connect to controllers

VM-2-A
OF controller

VM-2-B
OF controller

VM-3-A
OF controller

VM-3-B
OF controller

Slice A is defined by packets with source
address 10.101.100.11 or 10.101.101.11

Slice A is defined by packets with source
address 10.101.100.12 or 10.101.101.12

Slice A is defined by packets with source
address 10.101.100.21 or 10.101.101.21

Slice A is defined by packets with source
address 10.101.100.22 or 10.101.101.22

Slice A is defined by packets with source
address 10.101.100.31 or 10.101.101.31.

Slice A is defined by packets with source
address 10.101.100.32 or 10.101.101.32

VM-1-A
OF controller

OpenFlow Controller

ovs-controller
simple controller
will use to push a few rules into the switch
(really a slice)

to get started let's start the controller with
debug options and see what happens:
sudo ovs-controller --verbose --noflow --mute
ptcp:

What happened?

What do you see in debug output?

Did a switch connect to the controller?

What shows up on wireshark?

Create some flows to push into a
switch
use pico, vi, whatever...

to create a text file that contains flow entries in the same format as the ovs-ofctl
command, name the file flows.txt

For VM-1-A flows.txt would look like this:
priority=33000,in_port=1,actions=output:3
priority=33000,in_port=2,actions=output:4

For VM-1-B flows.txt would look like this:
priority=33000,in_port=3,actions=output:1
priority=33000,in_port=4,actions=output:2

sudo ovs-controller --verbose --noflow --mute --with-flows flows.txt ptcp:

Does the ping work???
ovs-ofctl dump-flows tcp:10.101.1.10X

How did these rules:
priority=33000,in_port=1,actions=output:3
priority=33000,in_port=2,actions=output:4
priority=33000,in_port=3,actions=output:1
priority=33000,in_port=4,actions=output:2

Become these:
in_port=2,nw_src=10.101.100.11 actions=output:4
in_port=2,nw_src=10.101.101.11 actions=output:4
in_port=4,nw_src=10.101.100.12 actions=output:2
in_port=4,nw_src=10.101.101.12 actions=output:2
in_port=3,nw_src=10.101.100.12 actions=output:1
in_port=3,nw_src=10.101.101.12 actions=output:1
in_port=1,nw_src=10.101.100.11 actions=output:3
in_port=1,nw_src=10.101.101.11 actions=output:3

Exercise 4 - Slicing the network

● Each person needs to login to the VM that is
running your switch's Flowvisor
○ ssh openflow@149.165.130.25X

Switch Flowvisor VM

#1 - 10.101.1.101 149.165.130.250

#2 - 10.101.1.102 149.165.130.251

#3 - 10.101.1.103 149.165.130.252

#4 - 10.101.1.104 149.165.130.253

Creating Slices

● Each person needs to create a slice for their
VM
○ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd

createSlice slicename controller_url email

○ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd
createSlice [your VM's name e.g. "VM_1_A"] tcp:[IP
address of your Eth1]:6633 fakemail@you.com

● Verify that your slice exists:
○ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd

listSlices

Verifying Slices

● Verify that the settings are correct:
○ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd

getSliceInfo [your slice's name]
connection_1=00:0a:2c:27:d7:76:ea:80-->NONE (retry in 7 seconds: max
+ 15)
contact_email=fakename@incntre.iu.edu
controller_hostname=10.101.1.10
controller_port=6633
creator=root

Unless you are running a controller on port 6633, you
should not see a connection the controller

Adding Flowspace

● You need to find the DPID of your switch
○ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd

listDevices
■ Device 0: 00:0a:2c:27:d7:77:2d:80

Find your Eth2 and Eth3 Ethernet
addresses...

run ifconfig on your VM to find your VM's Eth2
and Eth3 Ethernet addresses, you'll need them
shortly.

addFlowSpace

● We need to add Flowspace to allow you to
write rules from your controller to the switch
with the FV as a proxy
○ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd

addFlowSpace [switch_dpid] [priority] [flow_match]
[slice_name]

○ Ex:
■ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd addFlowSpace 00:

0a:2c:27:d7:76:ea:80 100 dl_type=0x800,nw_src=[IP Address of
your Eth2] Slice:[name of your slice]=4

■ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd addFlowSpace 00:
0a:2c:27:d7:76:ea:80 100 dl_type=0x806,dl_src=[Ethernet
address of your Eth2] Slice:[name of your slice]=4

■ (more commands on next page...)

Need to add a bit more flowspace
■ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd addFlowSpace 00:

0a:2c:27:d7:76:ea:80 100 dl_type=0x800,nw_src=[IP Address of
your Eth3] Slice:[name of your slice]=4

■ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd addFlowSpace 00:
0a:2c:27:d7:76:ea:80 100 dl_type=0x806,dl_src=[Ethernet
address of your Eth3] Slice:[name of your slice]=4

listFlowSpace

● verify the flowspace that you added
○ fvctl --passwd-file=/usr/etc/flowvisor/fvpasswd

listFlowSpace

Running the Controller

● Similar to before, we are going to run the
ovs-controller on your VM
○ sudo ovs-controller -v ptcp:6633 --with-flows

your_flows.txt
● What do the flows in your_flows.txt need to

look like?
○ you need to handle

■ dl_type=0x806
■ dl_type=0x800
■ Do you want to do layer 2 only rules or also

match on IP?

An example of reactive OF Control

Implement an observe the behavior of a
controller-based learning switch

Using Floodlight as the controller and
OpenVSwitch as the OpenFlow Switch

OpenVswitch

What is it?

Where did come from?

Why is it useful?

Floodlight

Real controller

Can be used as a development platform

Topology of OVS switch exercise

If OpenFlow was your only tool...

iPad

HP Printer
WiFi Network

OF
Switch

OF
SwitchRouter

The printer is
on my desk,
why can't I
print??

UserNetwork engineer
Why does
apple think the
entire universe
is a single
LAN?

If OpenFlow was your only tool...

OF
Switch

Trusting user
(is there any
other kind)

UserBad Guy
Switched
Ethernet is no
problem for man
in the middle
attacks!

PCPC

If OpenFlow was your only tool...

Update
Server

OF
Switch

Router

PC Zzzzzz

PC Zzzzzz

PC Zzzzzz

PC Zzzzzz

PC Zzzzzz

PCs sleeping, soundly, waiting for
their wake-on-LAN magic packets.

OF
Switch

