OpenFlow Overview

GENI Engineering Conference 12 Nov 1 2011

Sections

- OpenFlow Introduction
- OpenFlow tools hardware and software
- Deployments
 - GENI
 - NDDI
 - Campus
- Use Cases
- Discussion

Keys to Openflow/Software-Defined Networking

- Separation of Control Plane & Data Plane with Open API Between the Two
- Logically Centralized Control-Plane with Open API to Applications
- Network Slicing/Virtualization

- Creates Open Interfaces between Hardware, OS and Applications Similar to Computer Industry
- Increases Competition, Enables Innovation

The "Software-defined Network"

Trend

Computer Industry

Network Industry

Slide from Nick McKeown at Stanford

OpenFlow Basics

OpenFlow Basics (1)

Exploit the flow table in switches, routers, and chipsets

OpenFlow Basics (2)

Small number of fixed actions
e.g. unicast, mcast, map-to-queue, drop
Extended via virtual ports
e.g. tunnels, encapsulate, encrypt

Flow Table Entry

OpenFlow 1.0 Switch

+ mask

OpenFlow Basics (3)

Controller

OpenFlow Usage

Dedicated OpenFlow Network

OpenFlow Deployments

GENI

- GENI OpenFlow deployment on 8 campuses
 - Will be increasing to 25 campuses
- Internet2 and NLR backbones
- Integrated with production hardware on campuses
- Backbone, Regionals (funded in GENI Solicitation 3) and Campuses interconnected
- Outreach to more campuses in future (200?)

OpenFlow and GENI

Internet2 and NLR

- Internet2
 - Backbone of 5 NEC IP8800
 - Multiple 1G connections (in each direction)
 - L2circuits between sites
- NLR
 - Backbone of 5 HP 6600-24XG
 - 10 G wave between sites

NLR – I2 OpenFlow Core

NLR – I2 Backbone

- 2 Main Vlans 3515 and 3516
- Arranged so loops-free in the backbone over either vlan
- Campuses can cause loops though ☺

OS³E

- OS³E Open Science, Scholarship and Services Exchange
 - Production Layer 2 Provisioning tool over
 Internet2 NDDI Infrastructure
 - OpenFlow based
 - Developed by IU
 - Demo'd at I2 Fall Members Meeting
 - https://os3e.net.internet2.edu
 - user: os3e pw: os3edemo

IU Campus Deployment

- Focused on Edge (Closet) Deployment
- Goals:
 - Stress-Test Current Implementations
 - Verify "Sandboxing" of Openflow
 - Develop Monitoring Tools
 - Prepare for Production Deployments

Sample Campus Deployment (Indiana University)

- HP switches in Testlab and Production
 - 2 6600s in Bloomington testlab
 - 2 6600s in Indy SDN lab
 - 1 5406 Testlab/Wireless
 - 2 5406 used by Engineering
 - 3500 in Gigapop, IUPUI Wireless
- 5 Pronto switches (3290s) in testlab
- 2 Pronto 10G switches in production soon
- Netgear, NetFPGA 10G and 1G

3 New EU Projects: OFELIA, SPARC, CHANGE

EU Project Participants

- Germany
 - Deutsch Telekom Laboratories
 - Technishche Universitat Berlin
 - European Center for ICT
 - ADVA AG Optical Networking
 - NEC Europe Ltd.
 - Eurescom
- United Kingdom
 - University of Essex
 - Lancaster University
 - University College London
- Spain
 - i2CAT Foundation
 - University of the Basque Country, Bilbao
- Romania
 - Universitatea Politehnica Bucuresti

- Sweden
 - ACREO AB (Sweden)
 - Ericsson AB Sweden (Sweden)
- Hungary
 - Ericsson Magyarorszag
 Kommunikacios Rendszerek
 KFT
- Switzerland
 - Dreamlab Technologies
 - Eidgenossische Technische Hochschule Zurich
- Italy
 - Nextworks
 - Universita` di Pisa
- Belgium
 - Interdisciplinary Institute for Broadband Technology
 - Universite catholique de Louvain

OpenFlow Deployment in Japan NEC and JGN2Plus (NICT)

- Network virtualization and slicing
- HD video distribution in different slices
 - Baseball game
 - Snow festival

Global Interest

11,129 visits came from 1,252 cities

Dotal Level: City | Gountry/Torritory | Sub Continent Region | Continent Dimension: None | S

Virus: BEZIII Goal Set 1 Visits PagesVisit Avg. Time on Site % Now Visits Bounce Rate 11,129 00:05:33 41.05% 49.09% 2.85 % of Site Total: 100.00% Site Avg: 2.85 (0.00%) Site Avg: 00:05:33 (0.00%) Site Avg: 40.89% (0.37%) Site Avg: 49.09% (0.00%) Detail Level City 3 Wates J. Pages/Visit Avg. Time on Site % New Years Bounce Rate 1. Shibuya 530 2.85 00:62:47 36.79% 45.00% 519 2. Hanoi 3.24 00:06:16 25.01% 49.85% 3. San Jose 381 3.01 00.03.36 59.63% 46,19% 4. Stanford 368 3.61 00:63:39 12.23% 41,85% 290 00:03:53 5. Tokyo 2.76 45.17% 50.00% 6. Attorio 230 2.86 00:05:26 18.70% 43,04% 7. San-Ch'Ung 226 3.53 00:05:45 23.89% 31,86% 8. San Francisco 185 2.63 00:62:58 39.46% 52.43% 9. Mountain View 176 3.24 01.36.33 22.73% 49.43% 167 2.57 00:05:11 39.52% 47.90% 10. Bangabre

Current Trials and Deployments 68 Trials/Deployments - 13 Countries

Current Trials and Deployments

USA-Academia

Stanford University, CA

University of Washington, WA

Rutgers University, NJ

Princeton University, NJ

Clemson University, SC

Georgia Tech, GA

University of Wisconsin at Madison, WI

Indiana University

ICSI Berkeley, CA

University of Massachusetts at Lowell

Clarkston University

Columbia University (course offered)

University of Kentucky

UC San Diego

UC Davis

iCAIR/Northwestern

Rice University

Purdue University

Northern Arizona University

USA-Industry

Internet2

Cisco

Juniper

HP

Ciena

Deutsche Telekom R&D Lab

Marvell

Broadcom

Google

Unnamed Data Center Company

Toroki

Nicira

Big switch networks

Orange Labs

USA-Government

BBN

Unnamed Federal Agency

Current Trials and Deployments

Brazil

University of Campinas

Federal University of Rio de Janeiro

Federal University of Amazonas

Foundation Center of R&D in Telecomm.

Canada

University of Toronto

Germany

T-Labs Berlin

Leibniz Universität Hannover

France

ENS Lyon/INRIA

India

VNIT

Mahindra Satyam

Italy

Politecnico di Torino

United Kingdom

University College London

Lancaster University

University of Essex

Taiwan

National Center for High-Performance Computing Chunghwa Telecom Co

Japan

NEC

JGN Plus

NICT

University of Tokyo

Tokyo Institute of Technology

Kyushu Institute of Technology

NTT Network Innovation Laboratories

KDDI R&D Laboratories

Unnamed University

South Korea

KOREN

Seoul National University

Gwangju Institute of Science & Tech

Pohang University of Science & Tech

Korea Institute of Science & Tech

ETRI

Chungnam National University

Kyung Hee University

Spain

University of Granada

Switzerland

CERN

OpenFlow Concepts, Hardware and Software

Controllers

- The Network "OS"
- Open Source
 - -NOX
 - Beacon/Floodlight
- Commercial
- Watch for overload on the word "Controller"

Applications

- Use controller software to build applications
- Possible operational uses
 - Layer 2 provisioning
 - Layer 3 routing
 - Load Balancing
 - Distributed Firewall
 - Monitoring / IDS
- Research use

GENI Backbone Components

- Switches
- Flowvisor Hypervisor
- Opt-In Manager (Replacement by FOAM)
- Expedient
- User/Experimenter Applications

Flowvisor

- Sends traffic from the same switch(es) to multiple controllers
- Acts like a Hypervisor for network equipment
- Rule set similar to OpenFlow rules that send traffic to multiple controllers
- Most research shared infrastructure will use Flowvisor to have multiple controllers control the same switches

Fvctl

- Fvctl used to control flowvisor (over XMLRPC)
- Can create slice, direct traffic to "slices", see
- Flowspace is the set of mapping rules
- Devices Identified by DPID

chsmall@flowvisor:~\$ fvctl listDevices

Device 0: 0e:83:00:23:47:c8:bc:00 Device 1: 0e:83:00:26:f1:40:a8:00

chsmall@flowvisor:~\$ fvctl listFlowSpace

rule 0:

FlowEntry[dpid=[all_dpids],ruleMatch=[OFMatch[]],actionsList=[Slice:meas_manager=4],id=[236],priority=[10],]

Expedient / Opt-In manager

- Software to tie campus OpenFlow deployments to GENI Infrastructure.
- Allows Aggregate Providers (Campus) to make a "sliver" of a switch available to researchers
- Integrates with Flowvisor XMLRPC interface and GENI AAA infrastructure
 - http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/Deployment/ HOWTO/ProductionSetup/InstallingExpedientOIM

Experiment Workflow

SNAC

- Simple Network Policy Controller
- Web-Based Policy manager
- IU production SNAC at snac-prod.grnoc.iu.edu
- Can provide distributed firewall services
- Some statistics collected

Local University

OpenFlow Hardware

Juniper

NEC

HP

Quanta/Pronto

Cisco Nexus 3k

Extreme

EZChip

IBM/Blade Networks

Broadcom/Marvell ref. designs

Linux

OpenWRT

Netronome

WiMax

More Coming Soon..

NetFPGA and Indigo

NetFPGA

- FPGA card to test protocols in hardware
- 4 x 1G and 4 x 10G models
- OpenFlow 1.0 implementation
- Google used it for testing OpenFlow-MPLS code
 - http://www.nanog.org/meetings/nanog50/presentations/Monday/ NANOG50.Talk17.swhyte_Opensource_LSR_Presentation.pdf

Indigo

- Userspace Firmware Reference Release
- Support for Broadcom chips used in Pronto/Quanta

Switch Issues

- Hw vs Sw rules
- Optional items in OF Spec
- Control Channel resource exhaustion
- CPU exhaustion and isolation
 - Preventing OF traffic affecting production vlans
- Security
- 48bit vs 64 bit DPIDs

OpenVSwitch

http://openvswitch.org

VM-aware virtual switch, run distributed over hardware;

OpenFlow Spec process

http://openflow.org

- V1.0: December 2009
- V1.1: November 2010
 - Open but ad-hoc process among 10-15 companies
- Future
 Planning a more "standard" process from 2011

Measurement Manager

Measurement Manager

- Software built by IU for monitoring OpenFlow networks
- Ties into Flowvisor to get list of devices and topology (using LLDP)
- Acts as OF Controller to gather statistics
- Outputs Nagios, GMOC, SNAPP formats

OpenFlow Devices

Measurement Manager

What will we do with OpenFlow?

- 1k-3k TCAM Entries in Typical Edge Switch
- Difficult to take advantage of:
 - Manual Config, SNMP Writes, RADIUS
 - Limited Actions (allow/deny)
 - Vendor Specific
- But what if you could program these through a standard API?

Existing Uses of Openflow

- Flow based network provisioning
 - OS^3E
- Load Balancing
 - FlowScale
- L3 Routing
 - RouteFlow
- Policy/ACL distribution
 - SNAC

Uses of OpenFlow

- Security Applications
 - NAC Georgia Tech
 - IDS/IPS
 - Remote Packet Capture & Injection
- VM Mobility
 - Redirect specific application traffic to remote site
 - Flow-based forwarding no need to extend entire broadcast domain

Intercontinental VM Migration

Moved a VM from Stanford to Japan without changing its IP. VM hosted a video game server with active network connections.

Possible Uses of Openflow (Quick Wins)

- Dynamic Circuit Provisioning
 - Don't need to extend layer-2 end-to-end
 - Simply direct specific flows down a engineered path with guaranteed priority
 - Don't have to rely on scripted SSH sessions, SNMP or other sub-optimal ways to programmatically configure switches/routers.

Possible Uses of Openflow (Grand Challenges)

- Distributed Control-Plane Architecture Requires a Lot of State to be Synchronized Across Many Devices
- Many Protogols Meeded for Synchronization Internally to Networks (OSPF, RSVP, STP, etc)
- Can these "internal" protocols eventually be removed entirely with only BGP for interdomain route advertisements?

More Tools

- dpctl
 - Can view/add flow rules on switch
 - dpctl dump-flows tcp:127.0.0.1:6633

```
[flowvisor@ofc-vm2 chsmall]$ dpctl dump-flows tcp:156.56.5.43:6633 stats_reply (xid=0xc13a63bc): flags=[more] type=1(flow) cookie=0, duration_sec=0s, duration_nsec=113000000s, table_id=0, priority=65535, n_packets=0, n_bytes=0, idle_timeout=15,hard_timeout=0,tcp,in_port=30,dl_vlan=0xffff,dl_vlan_pcp=0x00,dl_src=00:1d:70:83:5b:40,dl_dst=00:0e:d6:2b: 08:00,nw_src=156.56.193.180,nw_dst=67.164.35.76,nw_tos=0x00,tp_src=49 211,tp_dst=53981,actions=
```


Wireshark

- Wireshark with OpenFlow Plugin
 - Diagnose OF problems by looking at OF messages
 - More for Cntroller debugging but can also solve issues with Flowvisor
 - Can see the "insides" of OpenFlow messages to the controller

Additional Sources of Info

- Resources for OpenFlow
 - Openflow.org
 - GENI Wiki
 - Openflow section of WebGUI
 - OpenFlow Tutorial
 - http://www.openflow.org/wk/index.php/
 OpenFlow_Tutorial

How to get involved

- Experiment with Controllers
 - NOX: http://noxrepo.org
 - Beacon: http://www.openflowhub.org/
- Switches
 - Soft switches / Mininet
 - OpenFlow tutorial VM
 - Hardware switches you already may have

