OpenFlow Workshop

APAN FIT Workshop - Hong Kong Chris Small – Indiana University Feb 22 2011

Sections

OpenFlow concepts, hardware and software

- OpenFlow use cases
 - Network Operators View
- Demos

Discussion

Operations

- Focus on why and how to deploy a OpenFlow network
 - Someone deploying OpenFlow Apps not necessarily building them
 - Concepts
 - Nuts and Bolts What software is available
- Resources for OpenFlow <u>http://www.openflowswitch.org/wk/index.php/</u> <u>HOTITutorial2010</u>

Keys to Openflow/Software-Defined Networking

- Separation of Control Plane & Data Plane with Open API Between the Two
- Logically Centralized Control-Plane with Open API to Applications
- Network Slicing/Virtualization

- Creates Open Interfaces between Hardware, OS and Applications Similar to Computer Industry
- Increases Competition, Enables Innovation

So why interesting to operations?

- Researchers can use to OpenFlow to explore new network ideas
 - Quick turn around from idea to deployment
- Operators also can use OpenFlow to build (or eventually purchase) interesting apps
 - "À la carte" networking
 - Inexpensive hardware
 - Provide an infrastructure

The "Software-defined Network"

Trend

Computer Industry

Network Industry

Slide from Nick McKeown at Stanford

OpenFlow Basics

OpenFlow Basics (1)

Exploit the flow table in switches, routers, and chipsets

OpenFlow Basics (2)

Small number of fixed actions
e.g. unicast, mcast, map-to-queue, drop
Extended via virtual ports
e.g. tunnels, encapsulate, encrypt

Flow Table Entry

OpenFlow 1.0 Switch

+ mask

OpenFlow Basics (3)

Controller

OpenFlow Usage

Dedicated OpenFlow Network

What to do with OpenFlow?

- 1k-3k TCAM Entries in Typical Edge Switch
- Difficult to take advantage of:
 - Manual Config, SNMP Writes, RADIUS
 - Limited Actions (allow/deny)
 - Vendor Specific
- But what if you could program these through a standard API?

Possible Uses of Openflow (Quick Wins)

- Security Applications
 - NAC
 - IDS/IPS
 - Remote Packet Capture & Injection
- VM Mobility
 - Redirect specific application traffic to remote site
 - Flow-based forwarding no need to extend entire broadcast domain – no STP issues

Other Applications

- Load Balancing
- n-cast
 - multiple streams over lossy networks
- Policy (Firewall)
 - SNAC
- Flow based network provisioning

Intercontinental VM Migration

Moved a VM from Stanford to Japan without changing its IP. VM hosted a video game server with active network connections.

Possible Uses of Openflow (Quick Wins)

- Dynamic Circuit Provisioning
 - Don't need to extend layer-2 end-to-end
 - Simply direct specific flows down a engineered path with guaranteed priority
 - Don't have to rely on scripted SSH sessions, SNMP or other sub-optimal ways to programmatically configure switches/routers.

Possible Uses of Openflow (Grand Challenges)

- Distributed Control-Plane Architecture Requires a Lot of State to be Synchronized Across Many Devices
- Many Protocols Needed for Synchronization Internally to Networks (OSPF, RSVP, STP, etc)
- Can these "internal" protocols eventually be removed entirely with only BGP for interdomain route advertisements?

OpenFlow Paradigm shifts

- "Wireless like" management of wired switches
- Manipulate virtual switches over many physical devices
 - VM Migration demo
- OSI model breakdown
- Control at the flow level

Deployments

GENI

- GENI OpenFlow deployment on 8 campuses
- Internet2 and NLR backbones
- Integrated with Production hardware on campuses
- Backbone, Regionals (funded in GENI Solicitation 3) and Campuses interconnected
- Outreach to more campuses in future?

Internet2 and NLR

- Internet2
 - Backbone of 5 NEC IP8800
 - Multiple 1G connections (in each direction)
 - L2circuits between sites
- NLR
 - Backbone of 5 HP 6600-24XG
 - 10 G wave between sites

NLR – I2 OpenFlow Core

OpenFlow Core

Connectivity v.1.0 IU BBN NLR NLR DENV Internet2 I2 WASH **I2 NEWY** NLR CHIC NLR ATLA I2 ATLA NLR SEAT **I2 LOSA** NLR SUNN **I2 HOUS**

VLAN 3715

VLAN 3716

Stanford

U of Wash

IU Campus Deployment

- Focused on Edge (Closet) Deployment
- Goals:
 - Stress-Test Current Implementations
 - Verify "Sandboxing" of Openflow
 - Develop Monitoring Tools
 - Prepare for Production Deployments

IU Deployment

- HP switches in Testlab and Production
 - 4 6600s in Bloomington testlab
 - 1 5406in Testlab/Wireless
 - 2 5406 used by Engineering
 - 3500 in Gigapop
- Pronto switches (w/ Purdue Calumet)
- NetGear switches
- NetFPGA 10G and 1G?

3 New EU Projects: OFELIA, SPARC, CHANGE

EU Project Participants

Germany

- Deutsch Telekom Laboratories
- Technishche Universitat Berlin
- European Center for ICT
- ADVA AG Optical Networking
- NEC Europe Ltd.
- Eurescom

United Kingdom

- University of Essex
- Lancaster University
- University College London

Spain

- i2CAT Foundation
- University of the Basque Country, Bilbao

Romania

 Universitatea Politehnica Bucuresti

Sweden

- ACREO AB (Sweden)
- Ericsson AB Sweden (Sweden)

Hungary

Ericsson Magyarorszag
 Kommunikacios Rendszerek
 KFT

Switzerland

- Dreamlab Technologies
- Eidgenossische Technische Hochschule Zurich

Italy

- Nextworks
- Universita` di Pisa

Belgium

- Interdisciplinary Institute for Broadband Technology
- Universite catholique de Louvain

OpenFlow Deployment in Japan NEC and JGN2Plus (NICT)

- Network virtualization and slicing
- HD video distribution in different slices
 - Baseball game
 - Snow festival

Global Interest

11,129 visits came from 1,252 cities

Dotal Level: City | Gountry/Torritory | Sub Continent Region | Continent Dimension: None | S Virus: BEZIII Goal Set 1 Visits PagesVisit Avg. Time on Site % Now Visits Bounce Rate 11,129 00:05:33 41.05% 49.09% 2.85 % of Site Total: 100.00% Site Avg: 2.85 (0.00%) Site Avg: 00:05:33 (0.00%) Site Avg: 40.89% (0.37%) Site Avg: 49.09% (0.00%) Detail Level City 3 Watts J. Pages/Visit Avg. Time on Site % New Years Bounce Rate 1. Shibuya 530 2.85 00:02:47 36.79% 45.00% 519 2. Hanol 3.24 00:06:16 25.01% 49.85% 3. San Jose 381 3.01 00.03.36 59.63% 46,19% 4. Stanford 368 3.61 00:63:39 12.23% 41,85% 290 00:03:53 5. Tokyo 2.76 45.17% 50.00% 6. Attorio 230 2.86 00:05:26 18.70% 43,04% 7. San-Ch'Ung 226 3.53 00:05:45 23.89% 31,86% 8. San Francisco 185 2.63 00:02:58 39.46% 52.43% 9. Mountain View 176 3.24 01.36.33 22.73% 49.43% 167 2.57 00:05:11 39.52% 47.90% 10. Bangabre

Current Trials and Deployments 68 Trials/Deployments - 13 Countries

Current Trials and Deployments

USA-Academia

Stanford University, CA

University of Washington, WA

Rutgers University, NJ

Princeton University, NJ

Clemson University, SC

Georgia Tech, GA

University of Wisconsin at Madison, WI

Indiana University

ICSI Berkeley, CA

University of Massachusetts at Lowell

Clarkston University

Columbia University (course offered)

University of Kentucky

UC San Diego

UC Davis

iCAIR/Northwestern

Rice University

Purdue University

Northern Arizona University

USA-Industry

Internet2

Cisco

Juniper

HP

Ciena

Deutsche Telekom R&D Lab

Marvell

Broadcom

Google

Unnamed Data Center Company

Toroki

Nicira

Big switch networks

Orange Labs

USA-Government

BBN

Unnamed Federal Agency

Current Trials and Deployments

Brazil

University of Campinas

Federal University of Rio de Janeiro

Federal University of Amazonas

Foundation Center of R&D in Telecomm.

Canada

University of Toronto

Germany

T-Labs Berlin

Leibniz Universität Hannover

France

ENS Lyon/INRIA

India

VNIT

Mahindra Satyam

Italy

Politecnico di Torino

United Kingdom

University College London

Lancaster University

University of Essex

Taiwan

National Center for High-Performance Computing Chunghwa Telecom Co

Japan

NEC

JGN Plus

NICT

University of Tokyo

Tokyo Institute of Technology

Kyushu Institute of Technology

NTT Network Innovation Laboratories

KDDI R&D Laboratories

Unnamed University

South Korea

KOREN

Seoul National University

Gwangju Institute of Science & Tech

Pohang University of Science & Tech

Korea Institute of Science & Tech

ETRI

Chungnam National University

Kyung Hee University

Spain

University of Granada

Switzerland

CERN

OpenFlow and GENI

OpenFlow Concepts, Hardware and Software

OpenFlow Hardware

Juniper MX-series

NEC IP8800

WiMax (NEC)

HP Procurve 5400

Cisco Catalyst 6k

PC Engines

Quanta LB4G

Netgear

More Equipment Soon

Controllers

- The Network "OS"
- Open Source
 - NOX
 - Nicira
 - C++/Python
 - Beacon
 - BigSwitch
 - Maestro
 - Rice
- Commercial
 - NEC

Applications

- Use controller software to build applications
- Possible operational uses
 - Layer 2 provisioning
 - Layer 3 routing
 - Load Balancing
 - Distributed Firewall
 - Monitoring / IDS
- Research use on production networks

Flowvisor

- Sends traffic from the same switch(es) to multiple controllers
- Acts like a Hypervisor for network equipment
- Rule set similar to OpenFlow rules that send traffic to multiple controllers
- Most research shared infrastructure will use Flowvisor to have multiple controllers control the same switches

Fvctl

- Fvctl used to control flowvisor (over XMLRPC)
- Can create slice, direct traffic to "slices", see
- Flowspace is the set of mapping rules
- Devices Identified by DPID

chsmall@flowvisor:~\$ fvctl listDevices

Device 0: 0e:83:00:23:47:c8:bc:00 Device 1: 0e:83:00:26:f1:40:a8:00

chsmall@flowvisor:~\$ fvctl listFlowSpace rule 0: FlowEntry[dpid=[all_dpids],ruleMatch=[OFMatch[]],actionsList= [Slice:meas_manager=4],id=[236],priority=[10],]

SNAC

- Simple Network Policy Controller
- Web-Based Policy manager
- IU production SNAC at snac-prod.grnoc.iu.edu
- Can provide distributed firewall services
- Some statistics collected

Local University

Expedient / Opt-In manager

- Software to tie campus OpenFlow deployments to GENI Infrastructure.
- Allows Aggregate Providers (Campus) to make a "sliver" of a switch available to researchers
- Integrates with Flowvisor XMLRPC interface and GENI AAA infrastructure
 - http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/Deployment/ HOWTO/ProductionSetup/InstallingExpedientOIM

NetFPGA and Indigo

NetFPGA

- FPGA card to test protocols in hardware
- 4 x 1G and 4 x 10G models
- OpenFlow 1.0 implementation
- Google used it for testing OpenFlow-MPLS code
 - http://www.nanog.org/meetings/nanog50/presentations/Monday/ NANOG50.Talk17.swhyte_Opensource_LSR_Presentation.pdf

Indigo

- Userspace Firmware Reference Release
- Support for Broadcom chips used in Pronto/Quanta

Switch Issues

- Hw vs Sw rules
- Optional items in OF Spec
 - No one is really implementing rewrite right now
- Control Channel resource exhaustion
- CPU exhaustion and isolation
 - Preventing OF traffic affecting production vlans
- Security
- 48bit vs 64 bit DPIDs
- General strangeness
 - HPs built off live train, NEC uniqueness

Issues

- Inter-operation of different hardware and software
 - Optional items in OF Spec
- Resource exhaustion on switches (CPU, Control channel)
 - Preventing OF traffic affecting production vlans
- Security
- IPv6 Support

OpenVSwitch

http://openvswitch.org

VM-aware virtual switch, run distributed over hardware;

OpenFlow Spec process

http://openflow.org

- V1.0: December 2009
- V1.1: November 2010
 - Open but ad-hoc process among 10-15 companies
- Future
 Planning a more "standard" process from 2011

Measurement Manager

Measurement Manager

- Software built by Indiana University for monitoring OpenFlow networks
- Ties into Flowvisor to get list of devices and topology (using LLDP)
- Acts as OF Controller to gather statistics
- Outputs formats for other tools
 - Nagios (Alarms)
 - GMOC (Topology)
 - SNAPP (Measurement Collector)

OpenFlow Devices

Measurement Manager

What will can do with OpenFlow?

- 1k-3k TCAM Entries in Typical Edge Switch
- Difficult to take advantage of:
 - Manual Config, SNMP Writes, RADIUS
 - Limited Actions (allow/deny)
 - Vendor Specific
- But what if you could program these through a standard API?

Possible Uses of Openflow (Quick Wins)

- Security Applications
 - NAC
 - IDS/IPS
 - Remote Packet Capture & Injection
- VM Mobility
 - Redirect specific application traffic to remote site
 - Flow-based forwarding no need to extend entire broadcast domain – no STP issues

Other Applications

- Load Balancing
- n-cast
 - multiple streams over lossy networks
- Policy (Firewall)
- Flow based network provisioning

Intercontinental VM Migration

Moved a VM from Stanford to Japan without changing its IP. VM hosted a video game server with active network connections.

Possible Uses of Openflow (Quick Wins)

- Dynamic Circuit Provisioning
 - Don't need to extend layer-2 end-to-end
 - Simply direct specific flows down a engineered path with guaranteed priority
 - Don't have to rely on scripted SSH sessions, SNMP or other sub-optimal ways to programmatically configure switches/routers.

Possible Uses of Openflow (Grand Challenges)

- Distributed Control-Plane Architecture Requires a Lot of State to be Synchronized Across Many Devices
- Many Protocols Needed for Synchronization Internally to Networks (OSPF, RSVP, STP, etc)
- Can these "internal" protocols eventually be removed entirely with only BGP for interdomain route advertisements?

OpenFlow Paradigm shifts

- "Wireless like" management of wired switches
- Manipulate virtual switches over many physical devices
 - VM Migration demo
- OSI model breakdown
- Control at the flow level

Workshop Demos

- Mininet Introduction Tutorial VM
 - http://www.openflowswitch.org/wk/index.php/ HOTITutorial2010
- Multiple switch control using single CLI
- VM Migration Demo
 - Moving a VM between subnets
 - Simplified version of other VM migration demos
- Measurement Manager showing Backbone Deployments
 - Topology and Statistic collection in a controller based environment

Mininet Demo

Single CLI Demo

 Run a CLI commands over multiple physical switches

Manipulate flow rules to block certain traffic

VM Migration Demo

Bloomington

Indianapolis

Measurement Manager Demo

- Topology using Google Earth
 - http://gmoc-db.grnoc.iu.edu
 - Select OpenFlow Aggregate
- Nagios data collection
 - http://gmoc-db.grnoc.iu.edu/nagios
- SNAPP Statistics
 - http://gmoc-db.grnoc.iu.edu/nlr-of/

How to get involved

- Experiment with Controllers
 - NOX: http://noxrepo.org
 - Beacon: http://www.openflowhub.org/
- Switches
 - Soft switches / Mininet
 - Hardware switches you already may have
 - Deploy Applications

More Information sources

- OpenFlow
 - http://openflowswitch.org

My contact info

Chris Small -- Indiana University

E-mail: chsmall@indiana.edu

Discussion and Questions?

