The ProtoGENI RSpec

Robert Ricci and Jonathon Duerig
RSpec Workshop
June 25, 2009



Where We Are

Working prototype RSpec
Supports components, interfaces, links

Used to create slivers:
— Raw PCs, VMs, VLANS, tunnels

Expressed as an XML schema
— http://www.protogeni.net/trac/protogeni/wiki/RSpec
Slice Embedding Service that understands it

Under development
— Extensions using NVDL
— Cross-aggregate RSpecs




Lifecycle

Progressive annotation
User creates request (bound or unbound)
Passes to a Slice Embedding Service

— Annotates with physical resources selected
— Maybe more than one

Gives to CM

— CM signs (ticket)

Manifest returned by CM

— Adds details like access method, MACs, etc.



Four Types

Similar, but not identical

Advertisement: “Catalog” or “Classifieds”

— Published by Component Manager

Request: “Purchase Order”

— Constructed by user (maybe from advertisement)
Ticket: “Receipt”

— Signed (special type of credential)

Manifest: “Packing Slip”

— Returned by CreateSliver()



RSpec Design Principles

* Descriptive data structure

— Mapping between requested sliver and physical
resources

e Contains information

— About what CM provides
e Describe the pen, not the novel

— That the client needs to select resources
* Additionally, how to use components in manifest

* Progressively annotated



Important Ideas: Identifiers

Advertisement must have component IDs
Request must have virtual IDs

A bound request has both, creating a mapping
ldentifiers are URNs (GMOC proposal)

A sliver is uniquely identified by slice ID +
virtual ID + CM ID



Paths to Constructing a Request

e Direct
— Cut-n-paste from advertisement

— Add virtual IDs

* Indirect
— Start with desired topology
— Get help filling in component IDs

 Combinations of these styles possible



Important Ideas: Mapping

* Each requested node is mapped to a single
physical node

* Arequested link may be mapped to multiple
physical links
— Path or graph



Important Ideas

e Separate Schemas
— Ads << Requests < Tickets << Manifests
e Extensions (in development)
— Each extension lives in its own namespace

— Use NVDL to provide modular verification
— Extensions are ignorable (this may change)



Hard Problems

* Allocation of components the user didn’t
explicitly ask for

— Measurement devices

— Sub-components (eg. NetFPGA inside PC)
— Firewalls

— Traffic Shaping

e Multi-level Hierarchies
— Network layers
— Virtual nodes



Hard Problems (2)

* Splitting/Combining RSpecs
— Robust semantics

e Special Nodes
— The Internet

— Wireless Networks
— NAT/Firewall

* Coordination across aggregates



Coordination Across Aggregates:
The Problem

Both (or many) ends may need to share
information

— Eg. tunnel endpoints
Ordering/timing may be important
Negotiation may be necessary

— Eg. session key establishment

Some are transitive problems
— Eg. VLAN #s (unless translation possible)

Assumption: Cross-aggregate links are established
by endpoints within each aggregate



Coordination Across Aggregates:
Design Space

A) Client negotiates with each CM
— RSpec is the medium

B) CMs coordinate among themselves
— Using a new standardized control plane API
— RSpec could be medium

C) Untrusted intermediary negotiates for client
— Intermediary has no privs. that client does not

D) Trusted intermediary negotiates for client
— Pre-established trust betw. intermediary and CMs



Coordination Across Aggregates:
Our Plan

Hybrid of B and D

CMs negotiate two-party arrangements directly
— Eg. Tunnels

Trusted intermediary negotiates multi-party

— Eg. VLANSs
— Trusted authority picks VLAN #

Client is oblivious
— Only CMs talk to intermediary
— All knowledge about necessary negotiation lives in CM



http://protogeni.net



Manifest

* Contains information not necessary for
selection, but needed for use

* Might contain some info not existing at time
of request

— Virtual machine identifier

— MAC address of virtual interfaces
— VLAN tags

* CM may let experimenter modify



