Document date: 04/15/09. For most current
version see: https://seattle.cs.washington.edu/wiki/
NodeManagerDesign.

Node Manager Design Document

This document details the design and implementation of the Node manager. The purpose
of the node manager is to manage the different sandboxed programs (called vessels) that
are running on a computer. The node manager stores information about the vessels it
controls and allows vessels to be started, stopped, combined, split, and changed. This
document describes vessels, the node manager interface for manipulating them,
advertisement of vessels, and how secure communication is provided.

There are several issues that are punted to V0.2. These include communication when
behind a firewall or NAT, malicious users overwriting advertisement information, transfer /
translation of restrictions when splitting and merging vessels, and the hooks necessary to
build a resource trading system (Bellagio, SHARP, BACKS, Tycoon, etc.) on top of this. I
believe it's best to get the basics working and solve any problems there.

Vessels

A vessel is a controlled environment for running code (implemented using the repy
sandbox). Programs that run in vessels are prevented from performing unsafe actions or
consuming undue resources. A single node manager typically manages (i.e. controls the
resources assigned to) many vessels at the same time. Vessels have well defined
boundaries that prevent them from interfering with one another (for example, different
vessels may be provided their own disjoint set of network ports). Each vessel has a
restrictions file, a stop file, and a log associated with it. The restrictions file lists what the
vessel can and cannot do (enforced by repy). The stop file allows the node manager to
stop the vessel (by creating a file with that name). The log is a circular logging buffer that
the vessel writes to which can be read by the vessel owner.

A common use of vessels would be that a researcher obtains a vessel (let's suppose upon
the installation of software). They then may decide to run a program within their vessel.
To do this, they add the program they want to run to their vessel (along with any data
files). They then may start the program running in the vessel. They can monitor the
status of their program by looking at a status indicator (coarse grained monitoring) or by
downloading information about the program from its circular log buffer (fine grained
monitoring). They can also stop their vessel (if the need arises). If their vessel provides a
useful service to other vessels, they can indicate this by entering information into the node
manager about the service. The researcher can locate the vessels they control because
their vessels advertise their availability in OpenDHT. The researcher can also prevent the
vessels from advertising as a way to prevent their limited space for advertisements from
being overwritten.

A more complex example is that a party (let's say an instructor) begins with a vessel on a
node and decides to split it into separate vessels (so as to allow different students to run
programs). They split the vessel (perhaps multiple times) and assign the vessels to


https://seattle.cs.washington.edu/wiki/NodeManagerDesign
https://seattle.cs.washington.edu/wiki/NodeManagerDesign

different students in the class. The students are allowed to work in groups and so some of

the students decide (once groups are formed) to combine their vessels on the node so as to

get more resources in a single vessel (note that there is nothing parallel or distributed about
the node manager, it only worries about the node it runs on).

Node Manager Interface

The node manager provides an interface that allows manipulation of vessels and information
gathering about the host computer. The node manager keeps a list of the vessels it
manages. Each vessel has the following information:

vesselname
A string that uniquely identifies the vessel. These strings are assigned by the node
manager and are unique to the vessel. Splitting and joining vessels result in new vessel
names, but stopping and starting a vessel do not.

ownerkey
A public key that is allowed to change the ownership or use of the vessel. The owner
can perform any action on the vessel

userkey(s)
A list of public keys that are allowed to issue a subset of the API calls

resourcefile
This is the resources and restrictions file for the vessel

status
What the execution status of the vessel is. Allowed values are: Fresh (has never
been started), Stopped (was running but stopped by NM command), Started (has been
started and is running when last checked), Terminated (the vessel stopped of its own
volition, possibly due to an error), or Stale (it last reported a start of "Started" but
significant time has elapsed, likely due to a system crash)

ownerinformation
This contains opaque data about the vessel that the owner defines. This information
is flushed anytime the vessel's owner key changes. The information field is a field that only
the current owner could have set and may be used to advertise a service, etc.

advertise
This boolean indicates whether or not the vessel should be advertised in announce
services like OpenDHT. It is set to true when the owner changes.

logfile
This is the circular log file that the vessel uses

stopfile

This is a file that the vessel checks and if it exists, the vessel exits. This is used to
stop a vessel.

oldmetadata This is needed for replay attack, freeze attack, etc. prevention



There is also a special set of resources called the offcut resources. The offcut resources are
the amount of capability lost when a vessel is split into two vessels and the amount of
capability gained when two vessels are joined. It accounts for the management overhead
of monitoring a vessel.

The interface is:

GetVessels() -- public
Returns the vesselname, owner key, advertise flag, status, user key(s), and
ownerinformation for every vessel (including vessels which do not advertise in OpenDHT)

GetVesselResources(vesselname) -- public
Returns the resource file for a vessel

GetOffcutResources() -- public
Returns the offcut resources

StartVessel(vesselname, args) -- private to owner, user
Begins executing a vessel with a set of arguments (including the command name).

StopVessel(vesselname) -- private to owner, user
Stops the execution of a vessel. Does not clean up the state for the vessel.

AddFileToVessel(vesselname, filename, filedata) -- private to owner, user
Create (overwrite if it exists) a file called "filename" in the vessel with contents
"filedata". This operation can fail if the file system of the vessel is too small.

RetrieveFileFromVessel(vesselname, filename) -- private to owner, user
Returns the contents of a file in the vessel.

DeleteFileInVessel(vesselname, filename) -- private to owner, user
Deletes a file in a vessel.

ReadVesselLog(vesselname) -- private to owner, user
Returns the vessel's log.

ListFilesInVessel(vesselname) -- private to owner, user
Returns a list of files (space separated) in the vessel.

ResetVessel(vesselname) -- private to owner, user
Removes all files in a vessel's file system, resets the log, and stops the vessel if it's
running. The advertise status is not changed.

ChangeOwner(vesselname, newpublickey) -- private to owner
Change the owner of a vessel to a different key. Also resets the ownerinformation to
the empty string.

ChangeUsers(vesselname, listofpublickeys) -- private to owner
Change the list of public keys selected for the vessel (the list may only have a small
number of entries)

ChangeOwnerInformation(vesselname, informationstring) -- private to owner



Sets the information string to a specific value. There is a limit on the value and
longer strings will be truncated.

ChangeAdvertise(vesselname, boolean) -- private to owner
Should this vessel be advertised in OpenDHT?

SplitVessel(vesselname, resourcedata) -- private to owner
Splits a vessel into two smaller vessels. The resource data determines the size of one
of the new vessels (the other is the original - the offcut). Both vessels are considered new
and are given new vesselnames. The owner key is copied from the existing vessel. The
restrictions are all removed and must be readded by the owner. The vesselname,
filesystems and logs of the vessels are newly created. Returns the names of the new
vessels (separated by a space).

JoinVessels(vesselnamel, vesselname2) -- private to owner

Merge two vessels into two one larger vessel. The resource information is determined
by adding the resources in the two vessels along with the offcut resources. A new vessel is
created with a new vesselname. The restrictions are written so that any action that either
could have performed can be performed by the created vessel. The created vessel is
considered new and is given a new vesselname. The owner key must have previously been
identical on both vessels and will be copied to the new vessel. The filesystem and log of
the new vessel is freshly made. Returns the new vesselname.

SetRestrictions(vesselname, restrictiondata) -- private to owner
Sets the restrictions for a vessel. The restrictions may only contain "deny" entries.

Advertising Vessels

Every minute, the node manager inserts a key / value pair into OpenDHT in order to allow
parties to find the nodes where they control vessels. The key that is inserted is the owner's
public key and the value is the local computer's IP address. This means that a party can
lookup their public key and find the nodes with vessels they control without needing to
search for nodes.

However, there exist several unsolved problems that are punted to v0.2:

1) clients may not be contactable if they are behind a firewall or NAT
A good solution to this is likely to be non-trivial because of the different NAT
implementations / quirks

2) preventing a malicious user from overwriting the information in openDHT.
This seems easy to fix but may require changes to openDHT

Secure Communication

After digging into this, I decided to "roll my own" because an XMLRPC client is going to be a
huge headache to port to the sandbox. I've already ported RSA and SHA so I'm not too far
away. I've built a "signeddata" module that handles many types of attacks (replay, freeze,
misdelivery, and out of order).



