Forest – an Overlay Network for Real-time Distributed Apps *GEC7 demo – 3/2010*

Jon Turner

Applied Research Lab
Computer Science & Engineering
Washington University

www.arl.wustl.edu

Forest Overlay Network

- Overlay for real-time distributed applications
 - » large online virtual worlds
 - » distributed cyber-physical systems
- Large distributed sessions
 - » endpoints issue periodic status reports
 - » and subscribe to dynamically changing sets of reports
 - » requires real-time, non-stop data delivery, even as communication pattern changes
- Per-session provisioned channels (comtrees)
 - » unicast data delivery with route learning
 - » dynamic multicast subscriptions using multicast core

Unicast Addressing and Forwarding

- Every comtree has its own topology and routes
- Two level unicast addresses
 - » zip code and endpoint number
- Nodes with same zip code form subtree
 - » all nodes in "foreign" zips reached through same branch
- Unicast routing
 - » table entry for each foreign zip code and local endpoint
 - » if no route table entry, broadcast and set route request flag
 - » first router with a route responds

Multicast Routing

- Flat addresses
 - » on per comtree basis
- Hosts subscribe to multicast addresses to receive packets
- Each comtree has "core" subtree
 - » multicast packets go to all core routers
 - » subscriptions propagate packets outside core
- Subscription processing
 - » propagate requests towards first core router
 - » stop if intermediate router already subscribed
 - » can subscribe/unsubscribe to many multicasts at once
- Core size can be configured to suit application

Forest Packet Format

- Encapsulated in IP/UDP packet
 - » IP (addr,port#) identify logical interface to Forest router
- Types include
 - » user data packets
 - » multicast subscribe/unsubscribe
 - » route reply
- Flags include
 - » unicast route request

IP/UDP Header (addr,port#) identify logical interface

ver length type flags

comtree

src adr

dst adr

header err check

payload (≤1400 bytes)

payload err check

Basic Demo Setup

Simple Unicast Demo

- Uses one host at each router
- Single comtree with root at KANS
- Host 1.1 sends to 2.1 and 3.1
 - » packet to 3.1 flagged with route-request and "flooded"
 - » router 2.100 responds with route-reply
- Host 2.1 sends to 1.1 and 3.1
 - » already has routes to both so no routing updates needed
- Host 3.1 sends to 1.1 and 2.1
 - » packet to 1.1 flagged with route-request and "flooded"
 - » router 2.100 responds with route-reply

Basic Multicast Demo

Uses four hosts per router» one source, three receivers

- 1.* 3.*
- Comtree centered at each forest router
 - » each source sends to a multicast group on each comtree
- Phase 1 uses comtree 1
 - each receiver subscribes to multicast 1, then 2 and 3;
 then unsubscribes 3 second delay between changes
 - » receivers all offset from each other
- Phases 2 and 3 are similar
 - » use comtrees 2 and 3, so different topology

Setting up & Running the Demo

- Prepare Forest router configuration files
 - » config info for Forest links, comtrees, routes, statistics
- Prepare/save SPPmon config specify charts
- Reserve SPP resources
 - » bandwidth on four external interfaces (one for sliced)
- Start session
 - » claim reserved resources
 - » setup communication endpoint for router logical interfaces and for sliced to report statistics
 - » start sliced on SPP and SPPmon on laptop
- Start Forest routers & hosts, then observe traffic
 - » done remotely from laptop, using shell script

Reservation Script

reservation start and end times (mmddhhmm) GMT

On spp, execute reservation 03151000 03152200

```
copy reservation
#! /bin/bash
                                       to a file
cat >res file.xml <<foobar
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<spp>
  <rsvRecord>
                                                             reserve
                                                             interface
    <rDate start="2010${1}00" end="2010${2}00"
                                                            bandwidth
    <pl><plRSpec>
                                                            4 of these
      <ifParams>
        <ifRec bw="10000" ip="64.57.23.186" /> ...
      </ifParams>
    </pl>
  </rsvRecord>
                                                  invoke scfg on
</spp>
                                                  reservation file
foobar
scfg --cmd make resrv --xfile res file.xml
```

Setup Script

On spp, execute setup

```
#! /bin/bash
# claim reserved resources
scfg --cmd claim resources
# configure interfaces, binding port numbers
                                                                interfaces
                                                                 to other
scfg -cmd setup sp endpoint -bw 10000 -ipaddr 10.1.1.1
                                                                  SPPs
     --proto 17 -port 30123
scfg -cmd setup sp endpoint -bw 10000 -ipaddr 10.1.3.1
     --proto 17 -port 30123
scfg -cmd setup sp endpoint -bw 10000 -ipaddr 64.57.23.186
     --proto 17 -port 30123
scfg -cmd setup sp endpoint -bw 2000 -ipaddr 64.57.23.182
                                                                "public"
     --proto 6 -port 3551
                                                                interface
# run monitoring daemon
                                            interface
cat </dev/null >stats
                                            for traffic
sliced -ip 64.57.23.182 &
                                            monitoring,
```

Run Demo

On laptop, run script fdemo1

```
#! /bin/sh
tlim=50
                # time limit for hosts and routers (sec)
dir=fdemo1
                # directory in which code is executed
# public ip addresses used by forest routers
r1ip=64.57.23.218 ...
# names and addresses of planetlab nodes used as forest hosts
h11host=planetlab6.flux.utah.edu
h11ip=155.98.35.7 ...
ssh ${sppSlice}@${salt} fRscript ${dir} 1.100 ${tlim} &
. . .
sleep 2
ssh ${plabSlice}@${h11host} fHscript ${dir} ${h11ip} ${r1ip}
1.1 ${rflg} ${minp} ${tlim} &
```