Architectural Support
for Internet Evolution and Innovation

Rudra Dutta, llia Balding’, Anjing Wang, Mohan lyef, George N. Rouskas
fComputer Science Department, NCSU, amnaissance Computing Institute, UNC-CH

Abstract—The architecture of the modern Internet encom- over 30 years. On the other, it begs the question if the sakviv
passes a large number of principles, concepts and assumpti® of the architecture is in fact being ensured by the reluaanc
that have evolved over several decades. In this paper, we arg 15 qestion those principles, cemented by shoehorninglnove

that while the current architecture houses an effective degn, it is licati d technoloaies into th isti it
not itself effective in enabling evolution. To achieve thedtter goal, 2PPlications and technologies into the existing architec

we introduce the SILO architecture, a meta-design framework ~ Without giving thought to its suitability.
within which the system design can change and evolve. We list Such contradiction will not be easily resolved, nor should

some insights about architectural research that guided ouwork, it pe. A dramatic shift to a new architecture should only
and also state the goals we formulated for our architectureWe be possible for the most compelling of reasons, and so, the

then describe that actual architecture itself, connectingit with
relevant prior and current research work. We show ﬁow the €Xistence of this contradiction creates the ultimate ‘1aiq5]

promise of enabling change is validated by showing our recen for the networking researcher community. This tussle pits
work on supporting virtualization as well as cross-layer research the investment in time, technologies and capital made in the

in optics using SILO. We present an early case study on the existing architecture against the possibilities whichropp by
usefuiness of SILO in lowering the barrier to contribution and 4qapting the new architecture in allowing for creation obelo
innovation in network protocols, and we conclude with a listof - . .
open research problems. and improved services over the Internet as well as opening ne
areas of research and discovery. It also allows us to caatinu
|. TOWARD A NEW INTERNETARCHITECTURE refine the definition of the Internet architecture and separa
In 1972, Robert Metcalfe was famously able to captu@nd re-examine the various aspects of it. A sampling of the
the essence of networking with the phrase “Networking @rojects funded through the NSF FIND program, targeted at
inter-process communication.” Nevertheless, describiing re-examining the architecture of the Internet, illustsatbe
architecturethat enables this communication to take place @oint: there are projects concerned with naming [19], [16])
by no means an easy task. The architecture of somethingrasting [3], [17], protocol architectures [9], which examai
complex as the modern Internet encompasses a large nunthese and other aspects from perspectives of security, man-
of principles, concepts and assumptions, which necegsadigement [24], environmental impact [1] and economics [16].
bear periodic re-visiting and re-evaluation in order toegss Another dimension is presented by the range of technologies
how well they have withstood the test of time. Such attempédlowing devices to communicate: wireless, cellular, cgit[4]
have been made periodically in the past, but really startadd adaptations of the Internet architecture to them.
coming in force in the early 2000’'s, with programs like This diversity of points of view makes it difficult to see
DARPA NewArch [27], NSF FIND [11], EU FIRE [13] and clearly the fundamental elements of the architecture arit th
China’s CNGI all addressing the question of the “new” Intgrn influence over each other. Most importantly for the research
architecture. interested in architecture, this makes it nearly imposstol
The degree to which the Internet continues to permeaaswer concisely the question of what the Internet architec
modern life with hundreds of new uses and applicationactually is, or even what concerns are encompassed by the
adapted to various networking technologies (from opticakrm “Internet architecture”. What things should be coasid
to mobile wireless, to satellite), raises concerns with thgart of the architecture of a complex system, and what should
longevity of the Internet architecture. The original simffile be considered specific design decisions, comparativelyemor
transfer protocols and UUNET gave way to e-mail and WWWnutable? This further fuels the “to change or not to change”
which by now are becoming eclipsed by streaming meditussle we alluded to above.
compute grids and clouds, instant messaging and peereio-pe One way to make progress in the tussle appears to be in
applications. Every step in this evolution raises the peasp creating modifications in the current architecture, whiohlge
of re-evaluation of the fundamental principles and assionpt new functionality or services not possible today, whileiting
underlying the Internet architecture. So far this architezhas the impact on the rest of the architecture, in essence explvi
managed to survive and adapt to the changing requiremettits architecture while preserving backward compatibil&y,
and technologies while providing immense opportunitias fdhis approach has the additional merit of paying heed to
innovation and growth. On the one hand, such adaptabilitye concerns expressed by some in the research community
seems to confirm that some of the original principles havegarding the potential of clean-slate approaches to be far
truly been prescient to allow the architecture to survive falivorced from reality, with no reasonable chance of transip

to deployment [8]. Such concerns have been epitomized by the?) perhaps more importantly, the lack of clear separation

phrase “Clean-slate is not blue-sky.” between policies and mechanisms in TCP/IP design
In our project named SILOServiceslntegration, contrb (e.g., window-based flow control vs. the various ways
and Optimization) we started, in a way, by following this in which the window size can respond to changes in the

approach. We did not attempt to rethink the Internet as a network environment) preventing the reuse of various
whole. Instead, we identified one particular aspect of the components; and

Internet architecture that, in our opinion, created a $igat 3) the lack of a pre-defined agreed-upon way for protocols
barrier to its future development. We proposed a way to nyodif at different layers to share information with each other
this aspect in a way that is least impactful on the rest of the for the purpose of optimizing their behavior for different
architecture and demonstrated the use of this new architect optimization criteria (of the user, the system, the network
via a prototype implementation and case studies. or a combination thereof).

Somewhat to our surprise, however, what emerged from ourThis lack of flexibility, for example, prevents applicat®n
research was a new understanding regarding the problemtait would ideally prefer to use some parts of the functiityal
hand. Specifically, we came to recognize that the importaoit the TCP/IP stack, but not others, in transmitting data. Fo
problem isnot to obtain a particular design or arrangemerihstance, being able to request a specific mode of flow control
of specific features, but rather, to obtainn@eta-desigrthat (or totally remove it), while still retaining in-order dekry of
explicitly allows for future change. With a system like theTCP may be desirable. However the current implementations
Internet, the goal is not to design the “next” system, or evehake no allowance for such flexibility.
the “best next” system, but rather a system that can sustairThe lack of explicit and well-defined cross-layer interanti
continuing change and innovation. mechanisms have resulted in more subtle problems: these

This principle, which we caltlesigning for changebecame interactions are implemented anyway, but ineahhocfashion,
fundamental to our project. In the process, we have comertssulting in a monolithic implementation where TCP and IP
develop our own answer to the question of what architectusedes are intermingled to achieve higher efficiencies. As-a r
actually is:it is precisely the characteristics of the system thault, clarity and reusability are sacrificed, with the urimded
does not change itself, but provides a framework within Wwhiconsequence of making each further unit of development and
the system design can change and evole current archi- research more difficult. In a way, this is a self-reinforcing
tecture houses an effective design, but is not itself éffedh process, with each modification making further modificagion
enabling evolution. Our challenge has been to articulage tbf the whole structure more difficult, ensuring that in thado
necessary minimum characteristics of an architecturewflat run TCP and its modifications remain the dominant mode
be successful in doing so. of data transport. When it comes to adding new cross-layer

This paper is organized as follows. In Section Il we discussteractions, particularly with the physical layer, theoplem
some pertinent problems with the current Internet archite¢ is even more pronounced, as is indicated by the fact that no
motivating the SILO architecture we describe in Section llktandard cross layer solution has been widely adopted, for
We describe the SILO software prototype and an early casgample, to assist TCP over wireless by taking advantage of
study in Section 1V, and in Section V we report our ongoinghysical layer conditions, despite a clear need and more tha
research. We discuss prior related research projects in Saalecade of extensive research results in this area.
tion VI, and we conclude with a list of open problems in Finally, the proliferation of half-layer solutions, inding
Section VII. MPLS and IPSec, point at another aspect of this problem:
that the protocol layers as we know them (TCP/IP or OSI
stacks) may no longer be relevant but are merely markers

As witnessed by the breadth of scope of the various FINEgr some vague functional boundaries within the architectu
related projects, ideas on how to improve the current I®emThese half-layer solutions clearly address important sgget
cover a wide range of approaches. These ideas are frequefily original Internet architecture had no way of describing
driven by the difficulties that arise in attempting to int8@r their place within a data flow. Furthermore, the “layering as
some new functionality into the Internet architecture. e t optimization decomposition” framework [6], [18], a systatic
SILO project we began with a single basic observatiognd formal approach in defining the network protocols within
that protocol research has stagnated despite the clear ngggh layer, highlights another shortcoming of fixed protoco
to improve data transfers over the new high-speed optiGghcks, namely, that the optimal layering structure depend
and wireless technologies and has been reduced to desigrgﬂgngw on both application requirements and the undeglyi
variants of TCP. This stagnation points to a weak point in thgstwork environment, and can be quite different than the
original Internet architecture, that somehow has disadidithe existing TCP/IP stack.
evolution and development of this aspect of the architectur In essence, the TCP/IP stack has become ossified, prevent-
The cause of this stagnation, in our opinion, lies in: ing further development and evolution of protocols withis i

1) the difficult barrier to entry in implementing, deployingframework [2]. Even when new transport service abstrastion

and experimenting with new data transfer protocols ihave been developed to address emerging application esquir
the TCP/IP stack, except for user-space; ments (e.g., reliable datagrams [21] or structured strga2i$

Il. THE PROBLEMS WITH THE CURRENT ARCHITECTURE

they cannot be accommodated by, or co-exist within, the _
current architecture. Applications written today that uizg 'S U@ o
data services not accommodated by the TCP/UDP dichotomy Crossd T Sioa
are left to take one of several paths: ieryia{ = Service
« implement their own UDP-based data transfer mecha- ng 5 Mot
nisms without the ability to reuse the elements of the : " I
existing architecture or to take advantage of kernel-space Kn0b<
optimizations in buffer management; o s] i]
« adapt an existing TCP implementation to new situations,

e.g., new media like wireless, or large bandwidth-delay
product optical networks; or

« abandon the old and “roll their own” implementation, as
has occurred in sensor networks, where TCP/IP has been

supplanted by a simpler implementation suitable for the These three principles became the basis of the SILO ar-
low-cost/low-power sensor hardware. chitecture. We refer to each individual layered arrangemen
These approaches point to a significant risk of fracturirgerving a single data flow assilo and we refer to individual
the future protocol development into their applicable domea layers within a silo asservicesand methods(more on this
(wireless, optical, sensor, mobile). In turn, these nekworlater). Figure 1 depicts three application-specific sileach
are then forced to communicate with each other or “theonsisting of a vertical arrangement of services (eachicerv
(canonical) Internet” via proxies or gateways. In a waystisi is represented as a rectangle labeled S1,S2; the other
a “balkanization” of the network as apprehended in [20].rfro elements shown in the figure are explained shortly.
our perspective, such an outcome is undesirable and pB.esgtSupport for Service Deployment and Composition
the fundamental challenge to the concept of IP as a simplé
convergence point (often referred to as IP being the “narrow Several other architectural elements developed from these
waist” of the “hourglass” protocol stack), which stands aRasic principles. As the system evolves, new reusable resdul
one of the fundamental assumptions of the current Interrf§grvices and methods) may be implemented and deployed
architecture. to fulfill the changing requirements of various applicagpn
Based on the identified shortcomings of the current Intern&hile allowing the reuse of existing ones. One may think of
architecture, it became clear that what is needed, is a nésflownloadable driver/plug-in model as being appropriate i
architectural framework that will address these deficiescithis context — new services and methods may be added to the
and allow for a continuing evolution of protocols and theiystem via one or more trusted remote repositories.
adaptation to new uses and media types. Since not all modules can be assumed to be able to co-exist
with each other in the same silo, it is necessary to keep track
I1l. SILO ARCHITECTURE (META-)DESIGNFOR CHANGE of module compatibility. We refer to these asmposability
A. Design Principles constraints These constraints may be specified by the creators

As a starting point, we adopted a view that layering of prdlf the modules W.hen the modules are made available_, or they
tocol modules within a data flow was a desirable feature th®@Y be automatically deduced based on the description of
has withstood the test of time, as it made data encapsulaffBfdule functionality. We envision that knowledge distlle
easy, and simplified buffer management. The ldy@indaries f_rom deployment experience of network operators, coIIe_c—
on the other hand, do not have to be in specific places; to dlf€ly: can also be stored here. The number of such consirain
minds, this caused entrenchment of existing protocols,iandc@" P& expected to be large and grow with time. This pointed
one of the causes of the identified ossification of the Interr@t t0 Us the need for automated silo composition, which can
architecture. Based on this initial assumption, the dbigra °€ accomplished by one or more algorithms based on the

characteristics of a new architecture generalize protocol application specification. This automated constructiosilufs
layering started to emerge: that became a crucial part of the architecture.

1) each data flow should have its own arrangement af Support for Cross-Layer Interactions and Control
layered modules, such that the application or the systeMgo the perspective of cross-layer interactions, it also

could create such arrangements based on applicatigly.ame desirable to not simply allow modules to communicate

needs and underlying physical layer aitributes; with each other outside the data flow, but to allow for an exter

the constituent modules should be small and reusablelgy gniity to access module states for purposes of optimizin

assist in the evolution by providing ready-made partige pehavior of individual silos and/or the system as a whole

solutions; and) , We refer to this function agross-service tuningand it is

3) the modules should _be able to pommunlcate with eaﬁgcomplished by querying individual modules gaugesand

other over a well defined set of interfaces. modifying their state vi&nobs Both gauges and knobs must

be well-defined and exposed as part of the module interface.

Fig. 1. Generalization of layering in SILO

2)

Service —
Application
‘eding Service Communication Spec
s

Method ~~~

Preceding Service Communications

packet traffic

Tuning
- data and

Strategies
Storage

| Optimization

Method Implementation N
policies

control
channel

Fig. 2. Services vs. methods

Universe of
Services
Storage

SILO
ontology

The important aspect of this approach is that the optinopati Consieion [~ ccess
algorithm can be pluggable, just like the modules within a

silo, allowing for easy retargeting of optimization objees

by a substitution of the optimization algorithm. This adsires Fig. 3. SILO functional architecture.
the previously identified deficiency of the current architee,

where policies and methods in protocol implementations ar .
frequently mixed together, not allowing for evolution ofen 0? Services Storag@USS) module. Both the SMA and SCA

without affecting the other. consul_t this module in the course of their operations. F_Fynal
there is a separatéuning Strategies Storagmodule which
D. Services vs. Methods houses various algorithms capable of optimizing the befravi

The service/method dichotomy introduced earlier becom@gindividual silos (or their collections) for specific olsféves.
important from the point of view of system scalability. Bor-This optimization is achieved by monitoring gauges and ma-
rowing from object-oriented programming concepts, what waipulating knobs that methods within instantiated silogase.
call services are generic functions (sucheasryption header This functional view of architecture is shown in Figure 3.
checksumor flow contro), while methods are specific imple- A typical sequence of operations within the SILO archi-
mentations of services. Thus, in some sense, methods are plicture consists of the followinga an application requests
morphic on services. This relationship allows for aggrigat @ nNew silo from the SMA by specifying, possibly in some
of some composability constraints based on generic servi@gue form, its communications preferences) the SMA
definitions, which necessarily propagate to the methods i@sses the request to the SCA, which invokes one of the
plementing this service, thus making the job of the devalop§omposition algorithms and, when successful, passes back
as well as of the composition algorithm, substantially esi 0 the SMA a silorecipe which explicitly describes the

Each service is described from the point of view of it§rdered list of services that will make up the new silo) (
functionality, its generic interfaces (to the services ietin the SMA instantiates a new silo by loading the methods
ately above and below it in a silo), as well as the knobs agscribed in the recipe and instantiating a state for the new
gauges it exposes. These, as well as composability camstraflata flow, and it passes a silo handle back to the application;
are inherited by methods implementing this service. THE) the application begins communicating while an appropriat
methods implementing services must conform to this interfaOptimization algorithm is applied to the silo via the tuning
definition, however they may be allowed to expose metho@g€nt.

specific knobs and gauges, as seen in Figure 2. It is quite_ gl_ear_ that, Whi_le this archit_ectyre offer_s a grea
_ deal of flexibility in arranging communication servicesjsth
E. SILO Functional Blocks flexibility comes at some cost. One important problem that

Another way to look at the SILO architecture is from théeeds to be addressed is that of an agreement on the silo
point of view of functional blocks. This architectural viedso structure between two communicating systems, noting that
served as the basis of the prototype implementation destrilihe silos need not be identical to accomplish communication
in the next section. At the heart of the system is @ito tasks (monitoring or accounting services are a trivial eplem
Management AgenSMA), which is responsible for main- of services that require no strict counterpart in the fad-en
taining the state of individual data flows and associatezssil silo). The solution to this problem may come in one of
The application communicates with this entity via a staddaseveral flavors. One approach may be an out-of-band chan-
API passing data, as well as silo meta-information, inelgdi nel, which allows two SMAs to communicate and create an
the description of desired services. The SMA is assisted Bgreement between them prior to applications commencing
a Silo Composition AgentSCA) which contains algorithms their communications. This approach may be suitable for a
responsible for assembling silos based on applicationestgu peer-to-peer model of communication. Another method, more
and known composability constraints between services aguitable for a client-server model, allows for a just-imé
methods. All service descriptions, method implementajoranalysis of compatibility between two silos by embedding a
constraints and interface definitions are stored inWiméverse fingerprint of the client silo structure in the first packeath

Applications

space processes running on a recent version of Linux (al-
though the prototype carries no explicit dependencies en th
Linux kernel). Individual services as well as tuning algioms
are implemented as dynamically loadable libraries (DLLs or
DSOs). The general structure of the prototype follows the
functional architecture in Figure 3.

Trnspor One of the important challenges we encountered when ad-
fechnologleg dressing the problem of dynamically composable silos was re
lated to the problem of representing the relationships (@usn
ability constraints) between the various services and resdu
Essentially, this is a problem of knowledge representation

Fig. 4. The SILO hourglass. T.he.se compogability constraints _take the form .of statement
similar to “Service A requires Service B” or “Service A carino
coexist with Service B”, which can be modulated by additlona

is sent out. Based on the information in that packet, the SVgRecifications such as ‘above’ or ‘below’ or ‘immediately
can determine if the communication between a client afpove’ or ‘immediately below’. Additionally, we also neetle
an already instantiated server is possible. In our works thio deal with the problem of specifying application preferes

SiLo
Universe

SILO

Physical interfaces

remains a problem still open for further investigation. or requests for silos, which can be describedapplication-
) . specificcomposability constraints. To address this problem we
F. Support for Evolution and Innovation turned toontologies specifically, ontology tools developed by

Let us now address the issue of why this architecture is béite semantic web community.
ter suited for evolution than the current one. As we mentibne We adopted RDF (Resource Description Framework) as
in the previous section, our mantra for this project has beéime basis for ontology representation in the SILO framework
“design for change”, and we believe we have succeeded in &elying on RDF-XML syntax we were able to create a schema
complishing this goal. The architecture we have descritoexsd defining various possible relationships between the elésnen
not mandate that any specific services be defined or methadisthe SILO architecture, namely, services and methods.
implemented. It does not dictate that the services be amdng hese relationships include the aforementioned complityabi
in a specific fashion, and leaves a great deal of freedom to gmnstraints, which can be combined into complex expres-
implementors of services and methods. What it does defisiens using conjunction, disjunction and negation. Ushig t
is a generic structure in which these services can coexistdthema, we have defined a sample ontology for the services
help applications fulfill their communications needs, whicwe implemented in the current prototype. The application
can vary depending on the type of application, the systetnnstraints/requests are expressed using the same sch@ma.
it is running on, and the underlying networking technolagieuniform approach to describing both application requests a
available to it. Thus, as the application needs evolve alatty well as the SILO ontology is advantageous in that a request,
the networking technologies, new communications paradigrnssued by the application and expressed in RDF-XML, can be
can be implemented by adding new modules into the systemerged into the SILO ontology to create a new ontology with
At the same time, all previously developed modules remaiwo sets of constraints — the original SILO constraints and
available, ensuring a smooth evolution. those expressed by the application, on which the compasitio

The described architecture israeta-designwhich allows algorithm then operates. Using existing semantic web fools
its elements (the services and methods, the composition amgl have implemented several composition algorithms [38] th
tuning algorithms) to evolve independently, as appligaticoperate on these ontologies and create silo recipes, frachwh
needs change and networking technologies evolve. Wheregsilos can be instantiated.
the current architecture, the IP protocol forms the narr@istv =~ Our RDF schema also allows us to express other knowledge,
of the hourglass (i.e., the fundamental invariant), in theC5 such as the functions of services (an example of a service
architecture the convergence point is the conformancedo tlunction could be “congestion control” or “error correatio
meta-desigmot a protocol (which is part of the design itself).or “reliable delivery”), as well as their data effects (exaes
Rather than a protocol which all else must be built on aridclude cloning of a buffer, splitting or combining of buiftg
under, SILO offers the silo abstraction as an invariant, theansformation, and finally null, which implies no data etje
narrow waist in the hourglass of this meta-design (Figure 4Jhese are intended to aid composition algorithms in degidin
the set of services to be included in a silo, when an apptinati
IV. PROTOTYPE AND CASE STUDY is unable to provide precise specifications in the requesihd)

We have developed a working prototype implementatiafis additional information in the composition algorithean
which serves as proof-of-concept demonstration of the fegetive area of our research.

sibility of the SILO framework. This prototype, which is
publicly available from the project website [26], is imple-
mented in portable C++ and Python as a collection of user-

A. Case study V. ONGOING SILO RESEARCH VIRTUALIZATION AND

Does SILO work? Is there any evidence to show that it CROSSLAYER EXPERIMENTATION
lowers the barrier to continuing innovation, its stated|gdaf The SILO architecture has the potential to provide new
course, the answer to such a question would take a long ansight into a number of research areas and enable new and
diverse experimental effort, and to be convincing, wouldeha fruitful directions of investigation and experimentation this
to come at least partly from actual developer communitiesr af section we address two topics that are the subject of active
at least partial deployment. research and development within the SILO project.

However, we have been able to conduct a small ca
study which has yielded encouraging results. In the Fall 0
2008, we made a simplified version of the SILO codebaseNetwork virtualization efforts have attracted growing in-
available to graduate students taking the introductorymater ferest recently. Virtualization allows the same resource t
networks course at North Carolina State University. StaslerP€ shared by different users, with independent and possibly
are encouraged to take this course as a prerequisite toMardiﬁerent views. In network Virtua"zation, a substratewwmerk
graduate courses on networking topics, and most studel$hared by a virtualization system or agent which provides
taking the course have no prior networking courses, or evierfaces to different clients.

a single undergraduate course on general networking topiCSTestbeds such as PlanetLab have demonstrated network
Students are required to undertake a small individual ptojevirtualization, and other efforts such as Emulab have aidw

as one of the deliverables, which typically involves cortihg investigation of a virtualized network through an emulated
a literature research on a focused topic and synthesiziag #vironment. The Global Environment for Networking Inno-
results in a report. In this instance, students were offéned vation (GENI) has identified virtualization as a basic dasig
option to try their hand at programming a small networkingtrategy for the envisioned GENI facility to enable expeim
protocol as a SILO service as an alternative project. Nirte d@tion support for diverse research projects. More imprtya

of the approximately fifty students in the class chose to do dbhas been conjectured that virtualization itself could¢drae

All but one of these students had not coded any networkiR§ essential part of the future Internet architecture. TiNDF
software previously. portfolio also contains projects on virtualization [29R][

To our satisfaction, all nine produced code to perform nohlevertheless, network virtualization is comparativelyslena-
trivial services, and the code not only worked, but it wal!re than OS virtualization, being a significantly more reice
possible to compose the services into a stack and interepefigld. We can expect there will be substantial ongoing work
them, although there was no communication or effort amofiy increasing the isolation, generality and applicabibfythis
the students to preserve interoperability during the séenes@rea in the short- to mid-term. As such, it is an importanaare
In one case, the code required reworking by the teachifgf any new architecture to consider.
assistant, because the student concerned had (agaimstinst Accordingly, we now describe our approach to realize
tions) modified the SILO codebase distribution. The sewic¥irtualization within the SILO framework in order to achiv
coded by the students were implementations of ARQ, errgfeater reusability. We go on to conjecture that such azaali
control, adaptive compression, rate control, and bit stgffi tion might allow the concept of network virtualization to be
Testing services such as bit error simulators were alsod;odgeneralized. . o
and two students attempted to investigate source routing an 1) Virtualization as ServiceSo far, network virtualization
label switching, going into the territory of SILO servicegep has been strongly coupled to the platform and hardware of
multiple hops, which are as yet comparatively unformed afge substrate. Logically, however, network virtualizaticon-
malleable in our architectural vision. sists of many coordinated individual virtualization caititibs,

While this is only the veriest beginnings of trying to valida distributed over networking elements, that share the commo
SILO, we feel that this case study at least demonstrates tfigictionality of maintaining resource partitions and euofog
the barrier to entry into programming networking servicas h them. In keeping with the SILO vision, we can view these
been lowered, in that the path from conceptual understgndfinctions as separate and composable services.
of a networking protocol function to attaining the ability t ~The most basic of these services is thatspfitting and
produce useful code for the same is dramatically shorter. Tergingflows; these services must obviously be paired. This
future similar case studies, we hope to study the reactish"0 more than the ability to mux/demux multiple contexts.
to such beginning programmers to the tuning agent aftpte that this service is a highly reusa_ble one, and can bg
ontology capabilities. And as always, we continue to invit@xpected_ to b_e useful |n_d|verse scenarios Whene_/er there is
the community to download the SILO code from our projecd9regation/dis-aggregation of flows, such as mappingio/f

website [26], try using it, and send us news about their jvesit physical interfaces, or at intermediate nodes for equiade
and negative experiences. classes on a priority or other basis, or label stacking.

In the networking context, virtualization is usually inter
preted as implying two capabilities beyond simple sharirige
first is isolation: each user should be unaware and unaffected
by the presence of other users, and should feel that it ogeerat

e L
Virtualization

services, as illustrated in Figure 5.

S Clearly, there are open issues and challenges with this

C oy - s F approach. One obvious question is whether the multipleldeve

Eﬁ- of virtualization s_hould be mediate_d _by a single _SMA or

o whether the SMA itself should run within a virtualizatiomd

ol o thus multiple copies of SMA should run on the multiple stacks

e | Either approach is possible to proceed with, but we belibee t

o i j \ former is the correct choice and is the one we are in the psoces

of implementing. In OS virtualization, the virtualizati@gent

is itself a program and requires some level of abstraction to
run, though it maps virtual machine requests to the physical
machine down to a high level of detail. Successive levels of

on a dedicated physical network. This is sometimes al¥§tualization with agents at all levels being supportedthy
called “slicing” This capability can be broken down intcS@me lower level kernel are difficult to conceive. However,
two services: (i) slice maintenance, which keeps track ef twetworking virtualization agents do not seek to virtualihe
various slices and the resources used by them, and (i) acc@® Which supports them. As such, the kernel support they
control, which monitors and regulates the resource usage'8fluire can be obtained through a unique SMA. _
each slice, and decides whether any new slices requested cdh My appear from this discussion that with per-flow silo
be allowed to be created or not; for example, rate contrahsugtates, there is no need to virtualize, and in fact it is fmesi
as leaky bucket would be an access control function. to extend all the slices to the very bottom (as indicated

The second capability igiversity: each user should be ableWith the dotted lines in Figure 5). However, the advantage
to use the substrate in any manner in which it can be us&d,our virtualization-as-a-service approach lies pregise
rather than being restricted to use a single type of serviegile maintenance; a service which is not called upon to
(even if strictly timeshared). This is akin to the ability tglistinguish between multiple higher level users can afford
run different operating systems on different virtual maes. keep state only for a single silo, and the virtualization e
In SILO, this capability is natively supported, through th&ncapsulates the state keeping for the various users.
composable nature of the stack (silo). Not only do different 3) Cross-Virtualization OptimizationFinally, it is possible
silos naturally contain different sets of services, but ¢oen- 0 conceive of cross-layer interaction across virtuaiarat
posability constraints provide a way to indicate what set oundaries, both in terms of composability constraints) an
upper services may be chosen by different slices when Ingjldituning. Returning to Figure 5, the service S1 may require
on a particular virtualized substrate. the illusion of a constant bit-rate channel below it, and the

The definition of a standard set of services for virtualiaati Virtualization below it may be providing it with this by
means that every realization of this service (for differerigolation. If, however, there is some service still furtioewn
substrates) would implement the functional interfacesifipel that does not obey this restriction (some form of statistica
by the service itself, thus any user of the virtualizatiorrig mult|ple>_<|ng, for example)_, then the illusion will fail. lust _
would always be able to depend on these standard interfad¥® Possible to express this dependence of S1 as a constraint,
Articulating this basic interface is part of our goal in thigVhich must relate services across a virtualization boundar
regard. For example, consider the case of virtualizing dh&ppears harder to motivate the need to tune performance
802.11 access point with the use of multiple SSIDs; tHFr0ss boundaries, or even (as the SMA could potentially
interface must allow specification of the share of each slicallow) across different slices. Although we have come up
However, since the different slices can use different vage With Some use cases, they are not persuasive. However, we
of 802.11 with different speeds, the sharing must really §gcall that the same was true of the layering abstractiif its
specified in terms of time shares of the wireless mediu@nd it is only recently that cross-layer interactions haome
which is the appropriate sharing basis in this context. to be perceived as essential. We feel that cross-virtuaiza

2) Generalizing VirtualizationFollowing the principle that OPtimization is also an issue worth investigation, everhé t
a virtual slice of a network should be perceived just like th@otivation cannot be clearly seen now.
network itself by the user, we are led to the scenario that Cross-Layer Experimentation

a slice of a network may be further virtualized. A provider In today’s networks, the physical layer is typically con-

who obtains a virtual slice and then supports differentaitd sidered as a black box: sequences of bits are delivered to
customers may desire this scenario. The current virtu@iza | - JOX. sequer)
it for transmission, without the higher layers being awafe o

approaches do not generalize gracefully to this possipilit SR . : X
. . .exactly how the transmission is accomplished. This sejparat
because they depend on customized interfaces to a um(g?(%oncerns imposed by the layering principle has allowed th

underlying hardware. If virtualization is expressed as tacfe .
; . . : .development of upper layer protocols that are independent o
services, however, it should be possible to design the cesvi . - .
the physical channel characteristics, but it has now become

so that such generalization is possible simply by re-udeg t L . L
9 P Ply by too restrictive as it prevents other protocols or applmasi

Fig. 5. Generalizing virtualization via successive vitizetion services

from taking advantage of additional functionalities thae a way down to the optical layer so as to enable meaningful and

increasingly available at the physical layer. transforming optical networking research. Currently, ever,
Specifically, in the optical domain, we are witnessing the clear road map on how to achieve such a “GENI-ized”
emergence of optical layer devices that are: optical layer has not been articulated, mainly due to th& lac

1) intelligent and self-awarethat is, they can sense orof interfaces that would provide GENI operations access to
measure their own characteristics and performance, attg functionality of the optical layer devices.
2) programmable that is, their behavior can be altered We believe that the SILO architecture would be an ideal
through software control. vehicle for enabling optical-layer-aware networking viith
The software logic defining more and more of these devic&ENI, as well as enabling cross-layer research throughi@kpl
requires cross-layer interactions, hence the currenttitri control interfaces (e.g., such as SILO knobs). Therefore, w
layered architecture cannot capture the full potential ha t are in the process of outlining specific strategies for ipoer
optical layer. For instance, the optical substrate indrggg rating the SILO concepts within the GENI architecture.
employs various optical monitors and sensors, as well alspoo

of amplifiers and other impairment compensation devices. Th . i i
monitoring and sensing devices are capable of measuringone of the earliest attempts to impose orderly design rules

loss, polarization mode dispersion (PMD), or other sign@ networking protocols is definitely the x-kernel projebe]
impairments; based on this information, it should then b&/hile SILO is similar to the x-kemel in introducing well-
possible to use the appropriate impairment compensationdgfined interfaces for protocol modules and organizing niedu
deliver the required signal quality to the application. Bufiteractions, it is important to recognize several majdfedi
such a solution cannot be accomplished within the currefCeS: & x-kernel was an OS-centric effort in implementing
architecture, and has to be engineeoedside of itseparately €XiSting network protocols as sets of communicating preees
for each application and impairment type; clearly, this @& n inside the novel kernel, while SILO is an attempt to introgluc
an efficient or scalable approach. a network protocol meta-de5|gn_that is independent of any

Reconfigurable optical add-drop multiplexers (ROADMs§{SSumptions about the underlying OS) (x-kernel made
and optical splitters with tunable fanout (for optical nicaist) an early attempt at streamlining some of the cross-layer
are two more examples of currently available devices who§@mmunications mechanisms; SILO makes cross-layer tuning
behavior can be programmed according to the wishes of higi@ld optimization enabled by such mechanisms an explicit
layer protocols. Looking several years into the future, orf@cus of the framework, and finallycY SILO is focused on
can anticipate the development of other sophisticatedcasvi the problem of automated dynamic composition of protocol
such as programmable MUX-DEMUX devices (e.g., that alloif@cks based on individual application requests and module
the waveband size to adjust dynamically), or even hardwaq@mposablllty constramts,w_hﬂethe x-kernel protocals pre-
structures in which the slot size can be adjustable arranged statically at boot time.

In the SILO architecture, all these new and diverse func- Among recent clean-slate research, there are two projects
tionalities within (what is currently referred to as) theysical Whose scope extends to include the whole network stack and
layer will typically be implemented as separate serviceshe hence are most closely related to our own project. The first
with its own control interfaces (knobs) that would allows Work on the role-based architecture (RBA) [5], carried ou
higher-level services and applications direct accessubcan- as part of the NewArch project [27]. RBA represents a non-
trol of, the behavior of the optical substrate. Hence, tHecs| layered approach to the design of network protocols, and
architecture has the ability to facilitate a diverse cditet organizes communication in functional units referred to as
of important cross-layer functions, including traffic gme ‘foles.” Roles are not hierarchically organized, and thusym
ing [10], impairment-aware routing [25], [31], and muléiyler interact in many different ways; as a result, the metadathen

network survivability [22] that have been studied extealiy Packet header corresponding to different roles form a “tfeap
as well as others that may emerge in the future. not a “stack” as in conventional layering, and may be acaksse

As a first step towards realizing this vision, we hava@nd modified in any order. The main motivation for RBA was

completed the design and implementation of a virtual co#f address the frequent layer violations that occur in tiveeci
catenation (VCAT) and the link capacity adjustment schenf@ternet architecture, the unexpected feature interastthat
(LCAS) [15] as a set of SILO services within the softwar€merge as a result [5], and to accommodate “middle boxes.”
prototype. In this initial stage, the services operate cwer The second is the recursive network architecture
environment that emulates SONET transport. Neverthetess, (RNA) [28], [23] project, also funded by FIND. RNA
have been successful in demonstrating cross-layer irttenac introduces the concept of a “meta-protocol” which servea as
by having the VCAT service increase or decrease the numi§neric protocol layer. The meta-protocol includes a numbe
of concatenated circuits in response to application regue8f fundamental services, as well as configurable capasiliti
and/or (emulated) transport network failures. and serves as a bhuilding block for creating protocol layers.
We also note that there is considerable interest within tffoecifically, each layer of a stack is an instantiation of the
GENI community to extend the programmability and virtualsame meta-protocol; however, the meta-protocol instabhee a
ization functionality that is core to the GENI facility, ahhe particular layer is configured based on the properties of the

VI. PRIOR RELATED WORK

layers below it. The use of a single tunable meta-protocol
module in RNA makes it possible to support dynamic
service composition, and facilitates coordination amoing t
layers of the stack; both are design goals of our own SILO
architecture, which takes a different approach in readjzin
these capabilities.

VIlI. CONCLUSIONS ANDOPEN PROBLEMS 1]

We have presented the SILO network architecture, a meta-
design that provides a framework within which the systeny
design can change and evolve. Our prototype software imple-
mentation realizes all key SILO concepts, demonstratirey this]
feasibility of SILO and validating the design principlesnA 4]
early case study also indicates that SILO has the potential
to lower the bar in terms of implementing and experimentinqs]
with network protocols. Nevertheless, there are additiopan
problems associated with the SILO architecture that we plai]
to study, including:

o Agreement on silo structure with remote emds we [7]
mentioned in Section 1ll, the flexibility offered by the
SILO architecture comes at a price: the need for a|118]
agreement between communicating applications abotd]
the structure of silos on both ends. We have alreadff]
identified several solutions to this problem, however {4
is an interesting enough problem to continue keeping it
open. Some desirable characteristics of an ideal solutiBal
are: low overhead of the agreement protocol, high degrge;
of success in establishing agreement and security of the
agreement process. (14]

« Stability and fairnessThe stability of today's Internet 15
is in part guaranteed by the fact that the same carefully
designed algorithms govern the behaviors of TCP flowW&8!
to achieve fairness among them. As demonstrated (i}
the literature, this stability is fragile and can be taken
advantage of by non-compliant TCP implementations L? !
achieve higher throughput rates compared to unmodifi 5
versions. SILO allows a plug-and-play approach to sulpo]
stituting optimization policies into protocol stacks, shu (20
ensuring stability and fairness of the system within sonjgy
pre-defined envelope of behavior becomes paramount.

« SILO in the core and associated scalability problem#22]
Most of our work so far has concentrated on the edge;
of the network where applications construct silos to com-
municate with one another, and we have not yet carefull§?!
considered the structure of the networking stacks in the;;
network core. It is clear that the SILO concept can
be extended to the core, by providing value additiot§®!
modules/services to individual flows or groups of flowspy;
as long as the scalability issues are addressed.

« Silo composition based on fuzzy application requestss]
As we indicated in Section Ill, the problem of silojg
composition based on application requests remains open.
One of the important areas to be studied is the ability°!
to construct silos based on vague specifications from
the application which may provide minimal information31]
about its needs, e.g., “reliable delivery with encryption”

This type of fuzzy or inexact specification requires an
extended ontology of services in which some reasoning
can take place. The solutions will be multiple and the
system must pick the one that by some criteria optimizes
overall system behavior or some other objective.

REFERENCES

M. Allman, V. Paxson, K. Christensen, and B. Nordman. rectural
support for selectively-connected end systems: Enablingemergy-
efficient future Internet.

T. Andersonet al. Overcoming the Internet impasse through virtualiza-
tion. IEEE Computer38(4):34-41, April 2005.

B. Bhattacharjee, K. Calvert, J. Griffioen, N. Spring,dah Sterbenz.
Postmodern internetwork architecture.

D. Blumenthal, J. Bowers, N. McKewon, and B. Mukherjeeyn@mic
optical circuit switched (docs) networks for future largeake dynamic
networking environments.

R. Braden, T. Faber, and M. Handley. From protocol starlrotocol
heap — role-based architecturCM CCR 33(1):17-22, January 2003.
M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. &dagg
as optimization decomposition: A mathematical theory otwoek
architectures.Proceedings of the IEEE5(1):255-312, January 2007.
D.D. Clark et al. Tussle in cyberspace: Defining tomorrow’s internet.
Proc. of ACM SIGCOMMpp. 347-356, Pittsburgh, PA, Aug. 2002.
C. Dovrolis. What would Darwin think about clean-slatelitectures?
ACM Computer Communication Revie88(1):29-34, January 2008.
D. Duchamp. Session layer management of network intdianies.

R. Dutta, A.E. Kamal, G.N. Rouskas, Ed&affic Grooming in Optical
Networks: Foundations, Techniques, and FrontieBgringer, 2008.

D. Fisher. US National Science Foundation and the REutaternet
Design. ACM Computer Commun. Revie®7(3):85-87, July 2007.

B. Ford. Structured streams: A new transport abstactin Proceedings
of ACM SIGCOMM 2007.

A. Gavraset al. Future internet research and experimentation: The
FIRE intitiative. ACM CCR 37(3):89-92, July 2007.

N. Hutchinson, L. Peterson. The x-kernel: An architeet for imple-
menting network protoccolslEEE Trans. Softw. Engl7:64-76, 1991.
International Telecommunication Union (ITU). Linkgacity adjustment
scheme (LCAS) for virtually concatenated signdlBJU-T G.7042 2004.
R. Kahn, C. Abdallah, H. Jerez, G. Heileman, and W. W..Skransient
network architecture.

D. Krioukov, K.C. Claffy, and K. Fall. Greedy routing dridden metric
spaces as a foundation of scalable routing architecturésuti topology
updates.

X. Lin, N. B. Shroff, R. Srikant. A tutorial on cross-lay optimization
in wireless networks|IEEE JSAC 24(8):1452-1463, Aug. 2006.

R. Morris and F. Kaashoek. User information architeetu

Computer Business Review Online. ITU head foreseesret balka-
nization, November 2005.

C. Partridge and R. Hinden. Version 2 of the reliableadptotocol
(RDP). RFC 1151, April 1990.

M. Pickavetet al. Recovery in multilayer optical networkslournal of
Lightwave technology24(1):122—-134, Janurary 2006.

The RNA Project. RNA: recursive network architecture.
http://www.isi.edu/ma/.

K. Sollins, J. Wroclawski. Model-based diagnosis ire tknowledge
plane.

J. Strand, A. L. Chiu, and R. Tkach. Issues for routingthie optical
layer. IEEE Communications39:81-87, February 2001.

The SILO Project Team. The SILO NSF FIND project wehsite
http://www.net-silos.net/, 2007.

D. D. Clark et al. Newarch project: Future-generation internet architec-
ture. http://www.isi.edu/newarch/.

J. Touch and V. Pingali. The RNA metaprotocol. Pnoceedings of the
2008 IEEE ICCCN Conferenc&t. Thomas, USVI, August 2008.

J. Turner, P. Crowley, S. Gorinsky, and J. Lockwood. Anhitecture
for a diversified Internet.

M. Vellala, A. Wang, G. N. Rouskas, R. Dutta, |. Baldimed D. Steven-
son. A composition algorithm for the SILO cross-layer optation
service architecture. IRroceedings of ANT®ecember 2007.

Y. Xin and G. N. Rouskas. Multicast routing under optidayer
constraints.Proc. IEEE INFOCOM 2004pp. 2731-2742, March 2004.

