Wireless Sensor Network Description Language (WSNDL) and Beyond

KanseiGenie Team:

Anish Arora, <u>Hongwei Zhang</u>, Rajiv Ramnath Mukundan Sridharan, Wenjie Zeng, Xi Ju

July 20, 2010

WSN experimental infrastructures

ExScal

VigilNet

NetEye WSU

Mirage Intel

Tutornet USC

CitySense

Harvard Sensor Network Testbed

user info schedule create job edit job maps status about

		*************************				***************************************
description	files	motes	options			
			ris to motes	н		
O Select wi	arnulti nich pr	pie prog ogram w	rams evenly ill run on inc	arosstra		eng day
Motes rini	ning ti		ted Progran	n above.		rites.
			L		Mote 1 Mote 2	

Harvard Sensor Network Testbed

user info schedule create job edit job maps status abo

description | files | motes | options |

Check here to enable ~250 Hz power data collection on Mote 118.

Reload | Submit |

Lack of experiment predictability/repeatability

- Conflicting experiment observations
 - Examples
 - wireless interference model (physical vs. protocol)
 - data collection protocol (for periodic monitoring vs. bursty events)
 - Major cause: many uncertainty factors are left unspecified, unmeasured, and implicit
- WSN resource specification is difficult
 - Complex dynamics and uncertainties in WSN
 - Heterogeneous platforms, protocols, and applications

- Principles and mechanisms of WSN RSpec
- Wireless Sensor Network Description Language (WSNDL)
- WSN federation architecture and RSpec implementation
- Open questions

- Principles and mechanisms of WSN RSpec
- Wireless Sensor Network Description Language (WSNDL)
- WSN federation architecture and RSpec implementation
- Open questions

RSpecs for uncertainty factors

- Principle #1: Distinguish specified properties of interest as controlled or observed
 - Controllable factors: co-channel interference ...
 Observable-only factors: slow time-varying wireless path loss ...
 - Controllability is context-specific: control by "choice" in WSN federations
 - Path loss exponent ...
- Mechanism: System choose/maintains controllable factors, and monitor/measures observable factors
 - RSpec embedding, passive/active monitoring techniques
 - Resource provisioning for monitoring

Network-centric WSN RSpec

- Principle #2: Enable reasoning about relationship/ dependencies among resources
 - Geometric relation among nodes, channel relation (e.g., path loss) among nodes, correlation among links
 - Dependencies among node, radio, and spectrum
- Mechanism: Network-centric measurement and embedding
 - Passive/active monitoring techniques for characterizing relationships/dependencies
 - RSpec embedding

RSpec for heterogeneous, federated WSNs

- Principle #3: Embrace heterogeneity/diversity in RSpec
 - Heterogeneity in resource and resource ontology
 - No consensus on basic issues such as WSN addressing (IP or not)
 - Heterogeneity in RSpec use cases
 - Multiple levels of abstraction: low-level specs for system interactions, high-level specs for researchers and opt-in users
- Mechanism: Enable ontology mapping
 - From high-level spec to low-level spec
 - Between heterogeneous low-level specs

- Principles and mechanisms of WSN RSpec
- Wireless Sensor Network Description Language (WSNDL)
- WSN federation architecture and RSpec implementation
- Open questions

→ : hasProperty

1 : one to one mapping <u>underline</u>: measurable (only)

1..* : one to one/many mapping

- Principles and mechanisms of WSN RSpec
- Wireless Sensor Network Description Language (WSNDL)
- WSN federation architecture and RSpec implementation
- Open questions

WSN federation architecture

Federated resource manager (FR): resource discovery and allocation

RSpec implementation

- Principles and mechanisms of WSN RSpec
- Wireless Sensor Network Description Language (WSNDL)
- WSN federation architecture and RSpec implementation
- Open questions

Open questions

- Measurement
 - Granularity vs. overhead/cost
 - Experiment itself vs. system service
 - Dynamics vs. fidelity
- Embedding
 - Ontology mapping
 - Spatial constraint
- High-level RSpec
 - Heterogeneous use cases and abstractions
- Integration
 - Sensor network , mesh network, vehicular network, cellular network

KanseiGenie

Backup slides

WSN extension to NDL: examples

Radio

- High-level: standard-based spec such as Zigbee and WiMedia
- Low-level: wireless spectrum, modulation, (programmable) network stack

Neighborhood

- High-level: connectivity (e.g., neighborhood size)
- Low-level: node location, link properties, correlation among links ...

Environment

- High-level: application context (e.g., home vs. industrial)
- Low-level: path loss, interference from co-existing nets ...