K-GENI and ETRI Virtualized Programmable Platform

Myung-Ki SHIN mkshin@etri.re.kr

GEC8@San Diego July 21, 2010

Why Virtualized Programmable Platform?

- The current Internet architecture is under serious reconsideration and people started thinking about alternatives.
 - Redefining Internet architecture requires many challenged works
- It's necessary to support a variety of the new different architectures to accommodate the heterogeneity of Future Internet (FI).
 - A common platform should be provided to accommodate the new heterogeneous architecture research and experiments in a shared infrastructure and testbed.

Two Objectives

- Future Internet Testbed as a short-term solution for architecture experiments
 - Running multiple experiments simultaneously in a shared experimental testbed
 - E.g., GENI
- Future Internet Architecture as a long-term solution for the future Internet
 - Virtualization, programmability, and federation would be an integral part of Future Internet Architecture
 - E,g, CABO and FP7 "the network of the future" projects
 (e.g., 4WARD, Trilogy, ...)

ETRI Platform Prototype

- NP-based hardware platform
 - Virtualized programmable substrate that operate at high speed (ATCA hardware)
- Virtualized programmable routers
 - Researcher-defined "Silver-based Virtual Routers"
- Common Platform APIs
 - Programming APIs for Researchers
 - Open substrate interfaces
- Capabilities and functions
 - Dynamic End-to-end Slice Operations
 - Control Framework APIs (protoGENI-compatible)
 - Openflow enabled

Platform Architecture

Researcher-defined "Virtualized Programmable Routers (VPR)"

- Dynamic resource allocation to sliver/link
 - Computing resources
 - CPU, memory, storage...
 - Network resources
 - Bandwidth/Link ...

VPR - Virtualized Programmable Router

Ongoing works for ETRI Platform

- Control Framework and UI
 - ProtoGENI Control Integration
- Open Substrate Interfaces
- Programming APIs for Researchers
- Packetvisor®

ETRI Control Framework Overview

ETRI Control Framework Entities

ProtoGENI Adapter Integration

Graphical Interfaces for Researcher

ProtoGENI Interface

iPhone /Android Interface

Open Substrate Interfaces

Multiple Substrate Support

NP-based hardware Platform
 Virtualized programmable substrate that operate at high speed (ATCA hardware)

- NetFPGA/PC, Wireless AP, etc.

allocateSliver/deallocateSliver ...

- allocatePort/dealloctePort ...
- allocateLink/deallocateLink ...
- uploadProgram/upgradeProgram ...
- getSliverStatus ...
- getPortStatus ...
- getProgramStatus

Programming APIs for Researchers

- E.g., To support hardwarebased packet processing
 - work_request_sync()/* get_work */
 - send_packet_prepare()/* packet building */
 - send_packet_finish()/* packet sending */
 - •

Packetvisor®

- (Simple) Packetvisor
 - Load multiple images (experiments) on I CPU Core
 - Multiple slivers scheduling
 - Dynamic CPU resource allocation on slivers
 - I/O queues virtualization
 - Memory, storage ...
 - Bandwidth/Link

Spiral-2: K-GENI

Title

 K-GENI : Establishment of operational linkage between GENI and ETRI/KISTI-Korea for international federation

Principal Investigator Information:

- PI: James G. Williams, Indiana University
- Co-Pls: Myung Ki Shin-ETRI, Dongkyun Kim-KISTI

Scope of the work

- Provision a dedicated international connection between Korea and Indiana
 University in the US to facilitate an investigation into international federation
 strategies for operations between the GENI Meta-Operations Center, at
 Indiana University, and ETRII/KISTI-Korea.
- Support tests for methods of interoperability between GMOC and the dvNOC system.
- Develop an external networking report to help guide other GENI projects with future external connectivity.

Federation Scenarios

General Solution for Federation

- Share researcher credentials and resource description (rspec)
- Agree on slice operation/management API and allocation policy
 - Sometimes, Adapter (broker) would be required
- Allow experiments (services) to run across (national) boundaries

Korea Testbed and Deployment

Core Node Deployment on KREONET

Korea – GENI Interconnection

Core Node Interconnection

Federated Meta Operations (GENI – Korea)

- Data acquisition from KISTI/ETRI and GENI (IU, Utah, etc.)
- Storing data into each resource repository
- Data exchanges using APIs provided by GMOC
- Federating data: topology, identifiers, schemas, etc.
- Creating federated user-oriented views/interfaces

Demo@GEC8

- Packetvisor
 - Dynamic CPU resource allocation on slivers
- ProtoGENI Integration
 - ProtoGENI UI and Reference CM Integration

Packetvisor® Demo Dynamic CPU Resource Allocation I.5MHz Router → 3MHz Router

