

G-Lab - The German approach towards Future Internet research

http://www.german-lab.de/

7th GENI Engineering Conference March 16-18, 2010 Durham, NC, USA

SPONSORED BY THE

Paul Mueller

Integrated Communication Systems Lab
Dept. of Computer Science
University of Kaiserslautern
Paul Ehrlich Bld. 34, D-67663 Kaiserslautern, Germany
Tel.+49 631 205 2263, Fax. +49 631 205 3056
www.ICSY.de

Internet Ecosystem

- Huge innovations in applications
 - the Web
 - P2P,...
 - VoIP, Triple play, ...
 - ...the future is Web2.0/3.0 ...
 - Internet core architecture
- Permanent evolution of the underlying technologies
 - Wireless / mobile
 - All over ethernet
 - Optical
 - ... the future is optical/mobile

Architecture of the Current Internet

"The Internet only just works

- Original architecture is violated
 - Growing demands/ requirements of ever new applications
 - Ever new capabilities of transport networks (optical/mobile)
- Increasing interdependencies hinder innovation
 - Cross layer functionalities

Complexity is still rising ...

G-Lab: Vision of the Future Internet

- Closing the loop between research and real-world experiments
- Provide an experimental facility for studies on architectures, mechanisms, protocols and applications towards Future Internet
- Investigate interdependency of theoretical studies and prototype development

G-Lab Organization

G-Lab Phase I (Oct. 2008)

- **▶** Coordination:
 - WP0: Coordination and Consolidation
- ► (Prototype) Studies:
 - WP1: Architecture of the Future Internet
 - WP2: Routing and Address Schemes
 - WP3: Wireless Networks and Mobility
 - WP4: Monitoring and Management Concepts
 - WP5: QoS, QoE and Security
 - WP6: Architecture and Composition of Services
- ► Experimental Facility:
 - WP7: Platform for Experiments

G-Lab Phase II (since Sept. 2009)

- ► COMCON (Control and Management of Coexisting Networks)
- VirtuRAMA (Network Virtualization)
- ► **FoG** (Forwarding on Gates)
- ► **NETCOMP** (Network-Computing for the Service Internet of the Future)
- CICS (Convergence of Internet and Cellular Systems)
- HAMcast (Hybrid Adaptive Mobile Multicast)
- ▶ Deep (Deepening G-Lab for Cross-Layer Composition)
- Real-World G-Lab
- ► Ener-G (Energy Efficiency in G-Lab)

G-Lab Organizational Structure

► Tasks

- Access for phase 2 members to phase 1 hardware
- Integrate phase 2 hardware
- Extend platform

▶ Problem

- No legal relationship between phase 1 and phase 2
- We need a contract!

Legal Contract

- Between all platform providers
- Between each partner and the platform

Partner Locations

G-Lab Environment

▶ Testbed:

- Real not simulated
- Specific purpose
- Focused goal
- Known success criteria
- Limited scale

Not sufficient for clean slate design

Experimental facility:

- Purpose:
 - explore yet unknown architectures
 - expose researchers to real thing
 - breakable infrastructure
- Larger scale (global?)
- Success criteria: unknown

G-Lab Environment

► Full control over the resources

- Reservation of single resource should be possible
- Elimination of side effects
- Testing scalability

Exclusive resource reservation

- Testing QoS / QoE
- Decentralized Resources can be independently used
- Tests on the lower layers of the network without affecting the "life" network

Extended functionality

- New technologies (Wireless, Sensor,...)
- Interfaces to other testbeds (GENI, PlanetLab Japan, WinLab, ...)

Hardware Equipment (1)

Normal Node

- 2x Intel L5420 Quad Core 2,5 GHz
- 16 GB Ram
- 4x Gbit-LAN
- 4x 146 GB disk
- ILOM Management Interface (separate LAN)
- ▶ Network Node
 - 4 extra Gbit-Lan
- ▶ Headnode
 - 2x Intel E5450 Quad Core 3,0 GHz
 - 12x 146 GB disk

▶ Nodes per Site

Site	Head	Network	Normal
Kaiserslautern	1	2	47+9
Würzburg	1	2	22
Karlsruhe	1	2	22
München	1	2	22
Darmstadt	1	2	22
Berlin	1	2	12

► 174 Nodes in total (1392 cores total)

Hardware Equipment (2)

► Site requirements

- 1 public IP address per Node
 - Not all sites have IPv6, so nodes should have IPv4 addresses.
 - Virtualized nodes need additional addresses
- Direct Internet access
 - No firewall or NAT
 - Nodes must be able to communicate with each others
 - Nodes must be able to use public services (NTP, public software repositories)

Network Topology

DFN IP Topology

Flexibility

- Experimental Facility is part of research experiments
 - Facility can be modified to fit the experiments needs
 - Researchers can run experiments that might break the facility
 - Experimental facility instead of a testbed
- Research is not limited by
 - Current software setup
 - Current hardware setup
 - Restrictive policies
- Experimental Facility is evolving
 - Cooperative approach
 - "When you need it, build it"
 - Core team helps
 - Cooperation with other facilities (e.g. Planet-Lab, GENI)
 - Federation

Boot Images

- Researchers can run any software on the nodes
 - Software comes as boot image
 - Either booted directly on hardware or in virtualization
- ► Three types of boot image
 - 1. Planet-Lab
 - Access for everybody
 - Easy to manage
 - Restricted hardware access
 - 2. Hypervisor virtualization image
 - Access for everybody
 - Unrestricted access to virtual hardware
 - 3. Custom boot image
 - Access can be restricted to specific research group
 - Unrestricted access to real hardware
- Access regulated by policy
 - Will favor generic images with open access over specific images with restricted access
 - Policy will not over-regulate

German-Lab Structure

► Central Node

- Resource management
 - Experiment scheduling
 - Resource provisioning
- Boot Image management
 - Distributes Images
 - Assigns Images to nodes
- Each site has a Headnode
 - Manages local nodes
 - DHCP
 - Netboot
 - Monitoring
 - ILOM access
 - Executes orders from Central node
 - Local overrides possible

Monitoring (http://nagios.german-lab.de)

Nagios

- Central monitoring in Kaiserslautern
- Obtain information from other sites via NRPE proxy on the head-node
- Checks
 - Availability of Nodes
 - Status of special services
 - Hardware status (via ILOM)

CoMon

- Planet-Lab specific monitoring
- In cooperation with Planet-Lab, Princeton
- Monitors nodes from within
 - CPU, Memory, IO
- Slice centric view
 - Monitors experiments

MyOps

- Planet-Lab specific tool
- In cooperation with Planet-Lab, Princeton

17

Detects common Planet-Lab problems

Questions?

http://www.german-lab.de/

