





# Resource Allocation in Virtual Desktop Clouds: VMLab-GENI Experiment

Project Team: Prasad Calyam, Ph.D. pcalyam@osc.edu,
Aishwarya Venkataraman, Mukundan Sridharan, Ph.D.,
Alex Berryman, Rohit Patali

Research Sponsors: NSF CNS-1050225, Dell, VMware, IBM

GEC11 Experimenter Lightning Talk
July 27 2011

- VMLab-GENI Experiment Context
- VDC Research Problem and Solution
- GEC10 Experiment Demonstration
- New Experiments Planned

- VMLab-GENI Experiment Context
- VDC Research Problem and Solution
- GEC10 Experiment Demonstration
- New Experiments Planned

## VMLab-GENI Experiment Context

#### VMLab @ OARnet/OSC

http://vmlab.oar.net



VMLab → GENI

Infrastructure VLAN

- Measurement & Evaluation →
   Allocation & Management
- Tabletop Experiments → Cloud Experiments



Virtual Desktop Cloud (VDC) in the VMLab-GENI Infrastructure

#### Motivations for Research

- Recent advances in thin clients and the numerous benefits in transitioning user desktops to virtual desktop clouds (VDCs)
  - Convenience, Cost savings, Green IT, Security, ...
- Need for "<u>system-aware</u>", "<u>network-aware</u>", "<u>human-aware</u>" frameworks and tools to deploy virtual desktop clouds
  - Existing work focuses mainly upon system (i.e., CPU and memory) measurements for server-side resource adaptation
  - Our focus is to couple client-and-server resource adaptation with measurements of network health and user experience
    - Minimize cloud resource over-commitment
    - Avoid guesswork in configuring thin client protocols
    - Deliver optimum user experience of virtual applications

#### VDCs Today – Overprovisioning and Guesswork...



#### Overprovisioning and Guesswork Fails!

- Calls from unhappy customers
- High operation \$\$

• Inadequate CPU, memory and bandwidth (Impact e.g., Slow interaction response times)



Research Scientist

**VDC Service Provider** 



• Inadequate CPU, memory and bandwidth (Impact e.g., IPTV with impairments and slow playback)



**Home User** 

 Excess CPU, memory and bandwidth (Impact e.g., Good interaction response times and smooth IPTV playback)

<u>Problem:</u> Resource allocation without awareness of system, network and user experience characteristics



**Mobile User** 

#### VDCs in the Future – Smart set-top boxes at user sites



- VMLab-GENI Experiment Context
- VDC Research Problem and Solution
- GEC10 Experiment Demonstration
- New Experiments Planned

#### Utility-directed Resource Allocation Model (U-RAM)

(Published in Computer Networks (Elsevier) SI on Internet-based Content Delivery, 2011)

- Utility function indicates how much of application performance in a VD can be increased with larger resource allocation
- Fixed RAM (F-RAM) tends to allocate resources that result in Q<sub>excess</sub>
- U-RAM profiles users based on VDBench measurements and allocates resources that results in either Q<sub>min</sub>/Q<sub>set</sub>/Q<sub>max</sub>
- We have developed a novel iterative algorithm for resource allocation that has fast convergence



#### **U-RAM Illustration**



I. New VD requests handling with freely available resources



II. New VD requests handling with all available resources allocated

- Kuhn-Tucker Theorem suggests that global utility is maximized if resource allocation is identical to each request
  - VDBench measurements show vast differences in utility functions for subsets of applications in a user group, hence we apply Kuhn-Tucker optimality in U-RAM across "desktop pools"



III. New VD request rejected when SLA violation situation occurs

### Cloud Scalability Performance Comparison





- Fixed RAM (F-RAM): each VD is over provisioned and is given resources that produce utility in Q<sub>excess</sub> range
- Network-aware RAM (N-RAM): Allocation is aware of the Q<sub>max</sub> required for network resources, but over provisions Q<sub>excess</sub> for system (RAM and CPU) resources due to lack of system awareness information
- System-aware RAM (S-RAM): Allocation is opposite of N-RAM; Q<sub>max</sub> is provisioned for the system resources and Q<sub>excess</sub> is provisioned for the network resources
- Greedy RAM (G-RAM): Allocation is aware of the Q<sub>max</sub> requirement in terms of both the system as well as the network resources based purely upon rule-of-thumb information
  - Utility-directed RAM (U-RAM): Allocation operates a VD with utility in:
    - Q<sub>max</sub> range while there are abundant resources available
    - Q<sub>set</sub> range when resources are already allocated under low VD request loads
    - Q<sub>min</sub> range when resources are already allocated under high VD request loads

- VMLab-GENI Experiment Context
- VDC Research Problem and Solution
- GEC10 Experiment Demonstration
- New Experiments Planned

### **GEC10** Experiment Demonstration

- Compared U-RAM and F-RAM performance
- Created a datacenter in VMLab
  - One physical server each in VMLab for U-RAM and F-RAM
- VDC clients on ProtoGENI slice in GEC10
  - Developed a web-portal to launch VDC clients and control network emulation for demonstration
- Leveraged OnTimeMeasure's new metric creation capability
  - Path-based measurements of network health such as delay, available bandwidth, loss
  - Host-based measurements from VMware VDI tools such as CPU, memory, number of VM connections

#### **GEC10 Experiment Demonstration Setup**







- VMLab-GENI Experiment Context
- VDC Research Problem and Solution
- GEC10 Experiment Demonstration
- New Experiments Planned

### New Experiments Planned

- Slices with distributed datacenters and users
  - Extend GEC10 experiment to a virtual desktop cloud with 3 data centers with L2/L3 network connectivity
  - Leverage GENI capabilities for Experimenters
    - ProtoGENI, OnTimeMeasure, Gush, INSTOOLS, OpenFlow, ...
- Improve our Provisioning and Placement Algorithms
  - Develop schemes to account for cost-benefit analysis and cost-offailure in VDC resource allocations
  - Gather user workload models from task profiling
    - University of Alaska, Fairbanks is collaborating with us on obtaining user workload profiles from NSF funded RAVE project classroom labs
  - Enhance VDBench thin-client embedded software for user and network performance characterization
- Bring actual users into GENI VDC Experiment
  - Fits well with the US IGNITE program to reach city user communities

## Thank you for your attention!

