

OUR LOCATION NORTHERN EUROPE

STOCKHOLM

STOCKHOLM

3h train, 1h flight

COPENHAGEN

- Karlstad population 85,000
- County seat of Värmland
- Every tenth inhabitant of Karlstad is a student
- Easy and comfortable life

DISCO Group

- 17 (+3) Members
 - 8 Senior researchers
 - 9 PhD students
- Research Areas
 - Latency optimizations
 - Transport layer issues
 - Wireless, mobile and Mesh networks
 - Software-defined networking
 - Cloud-based services
 - QoS/QoE in computer networks

KAUMesh

- Multi-radio multi-channel wireless mesh testbed
 - 20 802.11a/b/g/n WLAN based devices
 - 3 radios per node
- Can be accessed remotely
- Connected to GpENI

In Collaboration with

KAUMesh – Research Examples

- Channel assignment algorithms
 - Traffic demand-aware channel assignment
 - Hybrid channel assignment
- Adjacent channel interference and channel bandwidth adaptation
- Novel routing and forwarding mechanism
 - combining principles from multi-path and anypath routing
- Packet aggregation

Cellular Measurement Node

- Networks of 4 leading Swedish providers
 - Tre
 - Telia
 - Telenor
 - Tele2
- Technologies
 - 3.5G (HSPA+)
 - 4G (LTE)
- Applications
 - Bulk download / upload
 - Web transfer
 - VoIP / ping
 - Various combinations
- Ongoing measurements since June 2013

Cellular Research Examples

- Impact of bufferbloat in cellular networks
 - Interaction between different applications
 - Interaction with congestion control
- Proctocol efficiency
 - Measurements used as input for modeling

Web response times of short flows over 3.5G using different congestion control (cc) algorithms and background loads.

KAU

Experimental Resources @ Anna Brunstrom

CloudMAC

Winner of 2012 ACM Mobicom Student Research Competition

Problem

- AP hardware and software are getting fatter
- No standard, vendor-independent way to deploy network applications
- Fast IEEE 802.11 PHY layers make centralized control planes difficult

Approach

- Split AP in a physical and virtual AP (hosted in a data center)
- Use OpenFlow to control wireless transmission

Implementation

Modified Linux Kernel/OpenWRT

In Collaboration with • • T Deutsche Telekom

CloudMAC - Examples

Usage scenarios

- Management of enterprise WLANs, Home networks
- Seamless AP switching
- Mobility management
- Load balancing
- Energy efficiency

More information

https://www.youtube.com/watch?v=r6sNBt d5Krg&%0Bfeature=plcp

Number of lost packets

Other Experimental Software

- Additional QoS scheduling algorithms added to Open vSwitch
 - SFQ (Stochastic Fair Queuing), CoDel (Controlled-Delay Active Queue Management), FQ-CoDel (Fair Queue CoDel)
 - Integration with Common Open Research Emulator (CORE)

