
GENI Distributed Services
Preliminary Requirements and Design

Tom Anderson and Amin Vahdat (co-chairs)
David Andersen, Mic Bowman, Frans Kaashoek,
Arvind Krishnamurthy, Yoshi Kohno, Rick
McGeer, Vivek Pai, Mark Segal, Mike Reiter,
Mothy Roscoe, Ion Stoica

Distributed Services Work Status
Work split into subgroups:

– Security Architecture (Mike Reiter, Tom Anderson,
Yoshi Kohno, Arvind Krishnamurthy)

– Edge cluster definition (Mic Bowman, Tom Anderson)
– Storage (Frans Kaashoek, Dave Andersen, Mic

Bowman)
– Resource Allocation (Amin Vahdat, Rick McGeer)
– Experiment Support (Amin Vahdat, Arvind

Krishnamurthy)
– Operations Support (Mark Segal, Vivek Pai)
– Communications Substrate (Arvind Krishnamurthy,

Amin Vahdat, Tom Anderson)
– Legacy Systems (Tom Anderson)

Distributed Services Work Status
Each section progressed against a defined sequence:

– Overview
– Requirements description
– Preliminary design
– Related work discussion
– Modules and dependencies identified
– WBS estimate

Every part of the design subject to change as science
goals are refined, additional information gathered
– Including during construction

Distributed Services Work Status
Overall state:

– Rationale/design needs better documentation and an independent
review

– Modules identified/initial WBS estimates completed
– Need clarity from the GSC as to prioritization

Specifics
– Security: Design solid; user scenarios needed
– Edge Node/Cluster: Requirements in flux depending on budget issues;

moved to GMC
– Storage: Requirements solid; modules identified
– Resource allocation: Design solid; user scenarios needed
– Experimenter support: User experience needed to drive requirements
– Operations support: Requirements outlined
– Communication Services: Requirements outlined
– Legacy Support: Requirements outlined

Facility Software Architecture

GMC

Distributed Services

Substrate Components

name space for users, slices, & components

set of interfaces (“plug in” new components)
support for federation (“plug in” new partners)

- provide ability to virtualize
and isolate components in a
way meaningful to expts

achieve system-wide
properties such as
security, reproducibility, ..

Facility Software Architecture
At hardware device level, component manager, virtualization

and isolation layer

Minimal layer (GENI management core) to provide basic
building blocks
– Robustness of this layer is critical to the entire project, so keep it

small, simple, well-defined
– Avoid “big bang” integration effort

Services layered on top of GMC to provide system-level
requirements
– Modular to allow independent development and evolution
– As technology progresses, post-GENI efforts can replace these

services piece by piece

User Centric View
• Researchers

– Ease of describing, launching, and managing experiments
– Network-level, not node-level

• Operations staff
– Administrative cost of managing the facility

• Resource owners (hardware contributors)
– Policy knobs to express priorities, security policy for the facility

• System developers (software contributors)
– GENI developers and the broader research community building

tools that enhance GENI
• End users

– Researchers and the public

Goal of distributed services group is to make the system more
useful, not more powerful

Principal Concerns
• Security and isolation
• Operational cost and manageability
• Usability and experiment flexibility
• Scalability, robustness, performance
• Experiment development cost
• Construction cost and schedule
• Policy neutrality: avoid binding policy decisions

into GENI architecture

Topics
• Security architecture
• Edge cluster hardware/software definition
• Storage services
• Resource allocation
• Experiment support
• Operations support
• Communications substrate
• Legacy Internet applications support

Security Architecture
• What is the threat model?
• What are the goals/requirements?
• Access control
• Authentication and key management
• Auditing
• Operator/administrative interfaces

Threat model
• Exploitation of a slice

– Runaway experiments
Unwanted Internet traffic
Exhausting disk space

– Misuse of experimental service by end users
E.g., to traffic in illegal content

– Corruption of a slice
Via theft of experimenter’s credentials or compromise of slice
software

• Exploitation of GENI itself
– Compromise of host O/S
– DoS or compromise of GENI management infr

Requirements: Do no harm
• Explicit delegations of authority

– Node owner GMC Researcher students …
• Least privilege

– Goes a long way toward confining rogue activities
• Revocation

– Keys and systems will be compromised
• Auditability
• Scalability/Performance
• Autonomy/Federation/Policy Neutrality

– Control ultimately rests with node owners, can delegate
selected rights to GMC

Modeling Access Control in Logic
Expressing Beliefs:
Bob says F

– It can be inferred that Bob believes that F is true
Bob signed F

– Bob states (cryptographically) that he believes that F is true
Types of Beliefs:
Bob says open(resource, nonce)

– Bob wishes to access a resource
Bob says (Alice speaksfor Bob)

– Bob wishes to delegate all authority to Alice
Bob says delegate(Bob, Alice, resource)

– Bob wishes to delegate authority over a specific resource to Alice
Inference Rules (examples):
A says (B speaksfor A)

A says F

A signed FB says F

A says F
speaksfor-e says-i

Proofs: Sequence of inference rules applied to beliefs

Traditional Access Control Lists

Mike.Students says
open(D208)

delegate(Mike,
Mike.Students, D208)

Scott signed open(D208)Scott speaksfor Mike.Students

?

??

??

?

?

?

? ?

Part of the TCB. Received in the request.

Mike says open(D208)

Stored in the reference monitor.
Part of the TCB.

Note: not signed

A “Proof Carrying” Approach

Mike.Students says
open(D208)

Mike signed delegate(Mike,
Mike.Students, D208)

Scott signed open(D208)Mike signed (Scott
speaksfor Mike.Students)

?

??

??

?

?

?

? ?

Received in the request.

Mike says open(D208)

Stored in the reference monitor.
Part of the TCB.

Authorization Example (simplified)

1) Delegate: all
authority

2) You can authorize X
to send to GENI nodes

Unive
rsit

y 1Local
administrator

University 2

3) You can authorize X
to send to GENI nodes

Professor

Student

GENI Management Central

Slivers

Resource
monitor

4) You can authorize X
to send to GENI nodes

5) You can authorize X
to send to GENI nodes

send

X says send?
Machine X

Authentication and key management
• GENI will have a PKI

– Every principal has a public/private key
E.g., users, administrators, nodes

– Certified by local administrator
– Keys sign certificates to make statements in formal

logic (identity, groups, authorization, delegation, …)
• Private key compromise an issue

– Encrypted with user’s password? Off-line attacks
– Smart card/dongle? Most secure, but less usable
– Capture-resilient protocols: A middle ground

Capture-Resilience Properties
Server?

…, π3, π2, π1

Attacker must succeed in online
dictionary attack

π Server
π

Attacker gains no advantage

?
…, π3, π2, π1

Server

Attacker must succeed in offline
dictionary attack

π

Attacker can forge only until
server is disabled for device

π
Server

Delegation in Capture-Protection

Authorize
Revoke

Au
tho

riz
e

Authorize

Intrusion Detection
• Traditional intrusion detection methods may not

suffice for monitoring experiments

Misuse detection
Specify bad behavior and watch for it

(Learning-based) Anomaly detection
Learn “normal” behavior and watch

for exceptions

Normal Good

Bad

Normal

Bad

Good

Problem: Experiments do lots of
things that look “bad”

Problem: Experiments may be too
short-lived or ill-behaved to
establish “normal” baseline

Intrusion Detection
• Specification-based intrusion detection is more

appropriate for monitoring experiments
– Fits in naturally with authorization framework, as well

Normal Good

Bad

Specification-based intrusion detection
Specify good behavior and watch for violations

Audit Log Example: PlanetFlow
• PlanetFlow: logs packet headers sent and received

from each node to Internet
– Enables operations staff to trace complaints back to

originating slice
– Notify experimenter; in an emergency, suspend slice

• All access control decisions can be logged and
analyzed post-hoc
– To understand why a request was granted (e.g., to give

attacker permission to create a sliver)
– To detect brute force attacks

Packet Logging Architecture
CGI SQL query
MySQL, etc
Packet headers sessions
Packet headers batch
Divert packets

Kernel

Netfilter

Daemon

Database

Query (Web)

Performance
• Straightforward approach

– 2.5% of CPU; < 1% of bandwidth
• Modifications

– Group sessions in kernel
– Lazily add to database
– Eliminate intra-GENI traffic
– Limit senders if auditing too expensive

• 10 Gbps?
– Large flows easy, small flows even realistic?

Security Deliverables (21E)
1. Definition of certificate format and semantics (2E)
2. Certificate mgmt svc (construction, storage, lookup and

caching) (5E)
3. Access control guard (resource monitor) (2E)
4. Security policy language and certificate revocation, and UI

(3E)
5. Secure and reliable time service (purchase)
6. Proof generator (2E)
7. Specification-based intrusion detection service (5E)
8. Capture protection server and client software (2E)

#E represents estimate in developer-years, assuming a five year
construction span, excluding management, system test,
overhead, and risk factor

Security: Open Issues
• DoS-resistant GENI control plane?

– Initial control plane will employ IP and inherit the DoS
vulnerabilities thereof

– GENI experimentation may demonstrate a control plane
that is more resistant

– Design proof-carrying certificates to operate
independently of communication channel

• Privacy of operational data in GENI?
• Operational procedures and practices

– Central to security of the facility

Topics
• Security architecture
• Edge cluster hardware/software definition
• Storage services
• Resource allocation
• Experiment support
• Operations support
• Communications substrate
• Legacy Internet applications support

Internet

Site B

GENI
Backbone

Site A

Suburban Hybrid
Access Network

Sensor Net

PEN

PEN

Urban Grid
Access Network

PAP

PAP

PAP
PAP: Programmable Access Point
PEN: Programmable Edge Node
PEC: Programmable Edge Cluster
PCN: Programmable Core Node
GGW: GENI Gateway

GGW

PEC

GGW

PEN

PCN

PCNPCN

Example
Substrate

Programmable Edge Cluster: HW
Capabilities should be driven by science plan
Draft:

– 200 sites, cluster of 10-20 PCs at each
Workhorse nodes: running experiments, emulating higher speed
routers, distributed services
Multicore CPU, 8GB of DRAM, 1TB disk, gigE
High speed switch and router connecting to rest of GENI

Cut in latest iteration of draft plan:
– 20 sites, cluster of 200 PCs each

Compute/storage intensive applications

Programmable Edge Cluster: SW

Low-level VMM (e.g., Xen)

G
E

N
I C

on
tro

l

V
M

 S
liv

er

V
M

 S
liv

er

V
S

er
ve

r
K

er
ne

l

G
E

N
I C

on
tro

l

V
S

er
ve

rS
liv

er

V
S

er
ve

rS
liv

er

Stock VMM
interface e.g.

PVI

RPC over
TCP/IP

Experiments run as a vserver sliver or as a VM sliver
Communicate with GENI management code (running as sliver) through RPC

Stock Linux
vserver
interface

Execution environments
• PlanetLab-like best-effort VServers

– Fixed kernel, convenient API
– Weak isolation between slivers
– Weaker security for critical components
– Small number of standard configurations

minimal, maximal, expected

• Virtual machine monitors (e.g., Xen, VMWare)
– Choice of prepackaged or custom kernels (as in Emulab)

Linux + click
Others possible: singularity, windows, raw click

– Stronger resource guarantees/isolation
– poor I/O performance
– limited number of VMs (scalability)

Service Location
Services can be implemented at any of a set of levels:

– Inside VMM
if kernel changes are required
e.g., to implement fast segment read/write to disk

– In its own VM on the VMM
To configure VMM, or if security is needed
E.g., the GENI component manager; GENI security monitor

– In the linux vserver
If linux kernel changes are needed, e.g., traffic monitoring

– In its own vserver sliver
Running as a best effort service, e.g., vserver component manager

– In a library linked with experiment
E.g., database, cluster file I/O

Booting
• To boot a node

– Trusted computing hardware on each node
– Secure boot fetches initial system software
– Initial machine state eventually comprises:

Virtual Machine Monitor (e.g. Xen)
Initial domain: GENI Domain (GD).
Possibly VServer kernel by default

• To boot a sliver
– Send authorized request to GENI Domain
– GD verifies request; creates new xen/vserver domain
– Loads software that contains sliver secure boot (GENI auth code,

ssh server, etc.)
– See reference component design document for details

Containment & Auditing
• Limits placed on slice “reach”

– restricted to slice and GENI components
– restricted to GENI sites
– allowed to compose with other slices
– allowed to interoperate with legacy Internet

• Limits on resources consumed by slices
– cycles, bandwidth, disk, memory
– rate of particular packet types, unique addrs per second

• Mistakes (and abuse) will still happen
– auditing will be essential
– network activity slice responsible user(s)

Edge Cluster WBS Deliverables
• See GMC specification

Open Questions
• Resource allocation primitives on each node

– Reservation model:
% CPU in each a given time period?
Strict priorities?

– What about experiments/services whose load is externally driven
(e.g., a virtual ISP)?

– Other resources with contention: memory, disk
Fine-grained time-slicing of disk head with real time guarantees is
unlikely to work as intended
Either best effort, or disk head per application (means we need at least
k+1 disk heads for k disk intensive applications)

– How are service-specific resources represented (e.g., segment
store)?

– How are resources assigned to services? Through experiments
giving them resources explicitly, or via configuration?

More Open Questions
• Kernel changes needed in xen, vservers to

implement resource model
– Custom GENI OS to run on xen?

• Allocation of IP address/port space to slivers
– well known ports

• Efficient vserver sliver creation
– Configure new sliver (e.g., to run a minimal script) with

minimal I/O overhead, minimal CPU time
– Can/should vservers run diskless?
– Make it easy to share file systems read only
– Vserver image provided by symlinks or NFS loopback

mounts?

More Open Questions
What is the agreement with hosting sites?

– Rack space
– IP address space (\24 per site?)
– Direct connectivity to Internet
– BGP peering?
– Bandwidth to Internet?
– Local administrative presence?
– Ability to add resources under local control?
– Absence of filtering/NATs

Topics
• Security architecture
• Edge cluster hardware/software definition
• Storage services
• Resource allocation
• Experiment support
• Operations support
• Communications substrate
• Legacy Internet applications support

Storage for GENI
• Enables future network applications, which integrate

storage, computation, and communication
– Large-scale sensor networks
– Digital libraries that store all human knowledge
– Near-on-demand TV

• Experiments also need storage:
– Experiment results
– Logs (e.g., complete packet traces)
– Huge data sets (e.g., all data in Web)
– Running the experiment (binaries, the slice data, etc.)

• Managing GENI requires storage:
– Configuration
– Security and audit logging

• Storage will be distributed and shared

Storage Goals
1. Enable experiments that integrate computation and

storage
• Provide sufficient storage (e.g., 200 Petabytes)
• Provide convenient access to the storage resources
• Provide high performance I/O for experiments

2. Allow the storage services to evolve
• Allow experimenters to build new storage services
• Balance expectation of durability

3. Permit effective sharing of storage resources
• User authentication and access control
• Resource control

Overall Storage Design
• Node-level storage building blocks
• Higher level distributed storage abstractions

Dependencies on authorization, resource management

Node

Cluster Wide-area storage services

Node-level Storage Support
• Convenient access for experimenters & admins

– File system interface
– SQL database on node (likely)

Needed by many apps + GENI managers
e.g., auditing system

• Extensible access for service creators
– Raw disk / block / extent store

Direct access for building services
– “Loopback” filesystem support

Facilitate creating distributed storage services
– Efficient use of disk bandwidth

Distributed Storage Support
• Consolidate frequently used data management services

• Convenient administration and experimentation
– Transparent wide-area file system
– Data push services: install data “X” on 200 nodes
– Log storage and collection for research and management

• High performance distributed I/O
– e.g., an improved Google File System (cluster)
– ok to compromise on application-level transparency
– Possible high-peformance wide-area filesystem
– Write-once, global high-peformance storage

• Storage for constrained nodes (e.g., sensors)

Storage Deliverables (28E)
1. Local filesystem interface (1E)
2. SQL database (1E)
3. Services for creating new storage services and intercepting

storage system calls (1E)
4. Raw disk interface (3E)
5. Block-based storage interface (3E)
6. A wide-area filesystem for administration and experiment

management (4E)
7. A high-performance cluster filesystem (4E)
8. Fast write-once/read only storage services. (3E)
9. A reduced complexity storage interface for constrained

nodes. (3E)
10.Maintenance and bug fixing throughout life cycle. (5E)

Topics
• Security architecture
• Edge cluster hardware/software definition
• Storage services
• Resource allocation
• Experiment support
• Operations support
• Communications substrate
• Legacy Internet applications support

Resource Allocation Goals
• Define framework for expressing policies for

sharing resources among global participants
• Design mechanisms to implement likely policies
• Resource allocation mechanisms should

– provide resource isolation among principles
– be decentralized

support federation and local site autonomy
– be secure
– provide proper incentives

incentive for participants to contribute resources to the system
and to keep them up and running
incentive for participants to use only as much resources as they
really need

Existing Resource Allocation Model
• Existing model for PlanetLab resource allocation

– all resources placed in a central pool
– all users compete for all resources

• Pros:
– simple, no complex policy
– well understood, tried and true time sharing

• Downsides:
– no incentive for anyone to add additional resources
– no incentive to keep local machines up and running
– no incentive for anyone to use less than “as much as

possible”
– all best-effort—can’t reserve fixed share of a node

Example Allocation Policies
• All resources placed in central pool

[Supercomputer Center]
• Portion of resources reserved for dedicated use

[SIRIUS]

• Portion of resources available for bidding
[Bellagio]

• Pair-wise resource peering [SHARP]

Resource Allocation Proposal
• Three pieces

– GMC runs a centralized Resource Broker (RB)
– Each site runs a Site Manager (SM)
– Each component (e.g. node) runs a Component Manager (CM)

• Site donates some portion of its resources to GENI
• Site’s SM receives a Token of value proportional to

value of resources contributed
– SM subdivides Token among site users

• To access a resource
– User presents token + resource request to RB
– RB returns Ticket (a lease for access to requested resource)
– User presents Ticket to resource’s CM to obtain sliver

• “Back door”: GENI Science Board can directly issue
Tokens and Tickets to users and sites

GENI Resource Allocation

Site
Manager

Resource
Broker

Site
Manager

Site
Manager

Site
Manager

GENI

GENI Resource Allocation

• Sites donate some portion of resources to GENI

Site
Manager

Resource
Broker

Site
Manager

Site
Manager

Site
Manager

GENI

Donation Donation

• In exchange, GENI issues Tokens to each site with
value proportional to that of donated resources
– each token carries a value, so 10 tokens of value 1 are

equivalent to 1 token of value 10
– any principal can subdivide tokens

Site
Manager

Resource
Broker

Site
Manager

Site
Manager

Site
Manager

GENI

GENI Resource Allocation

• Site Manager delegates some resource privileges to
user by issuing a Token of smaller denomination

Site
Manager

Site
Manager

Site
Manager

Site
Manager

Resource
Broker

GENI

User

GENI Resource Allocation

GENI Resource Allocation

• User consults any resource discovery service to
locate desired resources

Site
Manager

Site
Manager

Site
Manager

Site
Manager

Resource
Broker

GENI

User Resource
Discovery
Service

GENI Resource Allocation

• User presents Token and resource request to Resource
Broker

Site
Manager

Site
Manager

Site
Manager

Site
Manager

Resource
Broker

GENI

User

GENI Resource Allocation

• Resource Broker (possibly after consulting with
Component Managers on requested resources) returns
one Ticket for each requested resource
– Ticket is a lease: guarantees access to resource for period of

time

Site
Manager

Site
Manager

Site
Manager

Site
Manager

Resource
Broker

GENI

User

GENI Resource Allocation

• User presents each Ticket to a Component
Manager, receives Sliver (handle to allocated
resources)

Resource
Broker

GENI

User

Site
Manager

Site
Manager

CM CM CM

CM CM CM

Site
Manager

CM CM CM

Site
Manager

CM CM CM

• GENI Science Board can directly issue Tokens
and Tickets to users and sites to reward
particularly useful services or hardware

Site
Manager

Science
Board

Site
Manager

Site
Manager

Site
Manager

GENI

GENI Resource Allocation

Additional Details: Donations

<xsd:complexType name="Donation">
<xsd:sequence>

<xsd:element name="GUID" type="xsd:string"/>
<xsd:element name="Recipient" type="xsd:string"/>
<xsd:element name="RSpec" type="tns:RSpec">
<xsd:element name="Signature" type="xsd:base64Binary"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RSpec">
<xsd:sequence>

<xsd:element name="Issuer" type="xsd:string"/>
<xsd:element name="Resources"

type="tns:ResourceGroup"/>
<xsd:element name="IsolationPolicy"

type="tns:IsolPolicy"/>
<xsd:element name="AUP" type="tns:AUP“>
<xsd:element name="ValidStart" type="xsd:dateTime"/>
<xsd:element name="ValidEnd" type="xsd:dateTime"/>

</xsd:sequence>
</xsd:complexType>

Additional Details: Tokens
<xsd:complexType name="Token">

<xsd:sequence>
<xsd:element name="Issuer" type="xsd:string"/>
<xsd:element name="GUID" type="xsd:string"/>
<xsd:element name="Recipient" type="tns:SliceName"/>
<xsd:element name="Value" type="xsd:decimal"/>
<xsd:element name="ValidStart" type="xsd:dateTime"/>
<xsd:element name="ValidEnd" type="xsd:dateTime"/>
<xsd:element name="ParentGUID" type="xsd:string"/>
<xsd:element name="Signature" type="xsd:base64Binary"/>

</xsd:sequence>
</xsd:complexType>

Additional Details: Tickets
<xsd:complexType name="Ticket">

<xsd:sequence>
<xsd:element name="GUID" type="xsd:string"/>
<xsd:element name="Recipient" type="tns:SliceName"/>
<xsd:element name="RSpec" type="tns:RSpec"/>
<xsd:element name="ValidFor" type="xsd:duration"/>
<xsd:element name="Signature" type="xsd:base64Binary"/>

</xsd:sequence>
</xsd:complexType>

Implementing RA policies

• Current PlanetLab RA policy (per-node proportional share)
– Site Manager donates nodes
– SM receives >= N*M Tickets

N=# of PL nodes, M=# users at site
– SM gives each user N Tokens of value 1
– User presents one Token of value 1 and a resource request to RB
– RB returns a Ticket authorizing prop.-share use of requested node
– User presents Ticket to CM, which returns Sliver on its node
– User’s share = 1/P where P=number of users (slivers) on the node

• Weighted proportional share
– As above, but user presents Token of value T to RB (T may be > 1)
– User’s share = T/Q where Q=number of Tokens redeemed by other slivers

that are using the node

Implementing RA policies (cont.)

• User wants guaranteed share of a node’s resources
– User presents token of value T + resource request to RB
– RB returns a Ticket for guaranteed T% share of requested node
– User presents Ticket to CM, which returns Sliver on its node

sliver is guaranteed a T% share of the node’s resources
– But if RB has already committed more than 100-T% of the node,

either
1) RB refuses to grant Ticket, then

(a) user tries again later, or
(b) user tries again immediately, specifying a later starting time, or
(c) out-of-band mechanism used to queue the request and issue

callback
to user when T% of the resource is available

2) Or, RB grants the Ticket, setting ValidFor to requested duration; user
presents Ticket at any time between ValidFrom and ValidTo

Implementing RA policies (cont.)

• Resource auctions
– RB coordinates the bidding
– “Cost” of using a resource is dynamically controlled by

changing “exchange rate” of Token value to Ticket share

• Loan/transfer/share resources among users, brokers, or
sites
– Tokens are transferrable, ParentGuid traces delegation chain
– Sites and users can give tokens to other sites or users

Resource Alloc Deliverables (17E)
1. Public API to set resource privileges on per-user/per-site basis.
2. Public API to set use privileges on per-component basis (for site

admins).
3. Initial web-based interface to allow GENI Science Council to set

per-user/per-site privileges using API in step 1.
4. Initial web-based interface to allow administrators to set policy for

locally available components.
5. Refined versions of 1, 2, 3, 4 above based on user and community

feedback.
6. Design of capabilities to represent GENI resources.
7. Design of tickets representing leases for access to individual GENI

components.
8. Initial implementation of Resource Brokers and client software to

present requests for resources and to obtain the appropriate set of
tickets.

9. Site administrator API and web interface to assign privileges on a
per-user basis.

10. Integration with resource discovery service.
11. Integration with experiment management software.

Open Issues
• Specifying resource aggregates (e.g. a cluster)
• Multiple, decentralized RBs rather than a single

centralized RB run by GENI
• Describing more complex sharing policies
• Build and deploy real implementation

– Site Manager, Resource Broker, Component Manager
as SOAP web services

– build on top of existing GMC XSD specifications
http://www.geni.net/wsdl.php

Resource Allocation Conclusion

• Goal: flexible resource allocation framework for specifying a
broad range of policies

• Proposal: centralized Resource Broker, per-site Site Managers,
per-node Component Managers

• Properties
– rewards sites for contributing resources

with special back-door to give users and sites bonus resources
– encourages users to consume only the resources they need
– allows to express a variety of sharing policies
– all capabilities (donations, tokens, tickets, slivers) time out

allows resources to be garbage collected
allows dynamic valuation of users and resources

– currently centralized, but architecture allows decentralization
– secure (all capabilities are signed)

Topics
• Security architecture
• Edge cluster hardware/software definition
• Storage services
• Resource allocation
• Experiment support
• Operations support
• Communications substrate
• Legacy Internet applications support

Experimenter’s Support Toolkit
• Make it easy to set up and run experiments on

GENI

• Goal: make GENI accessible to the broadest set of
researchers, including those at places with little
prior institutional experience

• Support different types of experiments/users:
– Beginners vs. expert programmers
– Short-term experiments vs. long-running services
– Homogeneous deployments vs. heterogeneous

deployments

Typical Experiment Cycle

Application

Resource
Pool

Obtain
Resources

Connect To
Resources

Start/Monitor
Processes

Clean Up

Prepare
Resources

Picture will look different for long-running services as process monitoring,
resource preparation, etc. will proceed in a cycle

Desired Toolkit Attributes
• Support gradual refinement:

– Smooth implementation path from simulation to deployment
– Same set of tools for both emulation and real-world testing

• Make toolkit available in different modes
– Stand-alone shell
– Library interface
– Accessible from scripting languages

• Enable incremental integration with other services
– For instance, should be able to change from one content distribution tool

to another by just changing a variable
• Sophisticated fault handling

– Allow experimenters to start with controlled settings and later introduce
faults and performance variability

– Library support for common design patterns for fault-handling

Toolkit as an Abstraction Layer

LAN
Clusters

Emulab
Modelnet GENI

API Components

Experiment
Instantiation

Job Control
I/O

exceptions

Debugging,
Transactions

Support
end-hosts,

heterogeneity

Scalability,
Resource
discovery

Shell Scripting Language

Entry-level users
Long running

Services Services
requiring fine-

grained control

Basic Toolkit Components
• System-wide parallel execution

– Start processes on a collection of resources
– Integrate support for suspend/resume/kill
– Issue commands asynchronously
– Support various forms of global synchronization (barriers, etc.)

• Node configuration tools:
– Customizing node, installing packages, copying executables, etc.

• Integrate with monitoring sensors
– Distributed systems sensors such as slicestat, CoMon
– Information planes for network performance (such as iPlane)

• Integrate with other key services
– Content distribution systems, resource discovery systems, etc.

Advanced Components
• Key stumbling block for long-running services is ensuring

robustness in the presence of failures
• Need to provide support for incremental resource

allocation
• Library support for common design patterns to handle

faults
– Support for transactional operations and two-phase commits,

support “execute exactly once” semantics, etc.
• Support for detecting abnormal program behavior,

application-level callbacks, debugging, etc.
• Reliable delivery of control signals, reliable delivery of

messages

Experiment Support (30E)
1. Tools for performing system-wide job control: such as executing the same command on all

nodes with desired levels of concurrency, etc.
2. Tools for performing operations in asynchronous manner and synchronizing with previously

executed commands.
3. Tools for setting up necessary software packages and customizing the execution

environment.
4. Tools for coordinated input-output (copying files and logs).
5. Exposing the toolkit functionality in a library API.
6. Exposing the toolkit functionality using a graphical user interface (6-8E)
7. Integration of tools into scripting languages.
8. Provide simple ways for users to specify desired resources.
9. Resilient delivery of control signals.
10. Provide transactional support for executing system-wide commands.
11. Provide support for detecting faults in experiments.
12. Scalable control plane infrastructure -- dissemination of system-wide signals, coordinated

I/O, and monitoring program execution should all be done in a scalable manner (3-5E)
13. Interface with content distribution, resource discovery, slice embedding systems.
14. Interface with the information plane for communication subsystem and various sensors

monitoring the testbed.
15. Tools for checking for global invariants regarding the state of a distributed experiment (4E)
16. Logging to enable distributed debugging.
17. Debugging support for single-stepping and breakpoints.

Slice Embedding Deliverables (25E)
1) Resource specification language for describing

user's needs.
2) Generic matching engine.
3) Algorithms for efficient matching.
4) Matching engine for each subnet.
5) Stitching module to compose results from

different subnets.
6) Integration with the resource discovery system to

identify available resources.
7) Integration with the resource allocation system to

ensure allocation.

Topics
• Security architecture
• Edge cluster hardware/software definition
• Storage services
• Resource allocation
• Experiment support
• Operations support
• Communications substrate
• Legacy Internet applications support

Monitoring
• Goals

– Reduce cost of running system through automation
– Provide mechanism for collecting data on operation of system
– Allow users to oversee experiments
– Infrastructure (i.e., node selection, slice embedding, history, etc.)

• History
– Clusters, Grid – Ganglia
– PlanetLab – CoMon, Trumpet, SWORD

• Metrics
– Node-centric: CPU, disk, memory, top consumers
– Project-centric: summary statistics (preserves privacy)

• Triggers
– Node, project activity “out of bounds”
– Warning messages, actuators
– Combinations with experiment profiles

Operations Support Issues
• Two categories of support systems

– Online: monitor the function and performance of GENI
components in real-time

Use the ITU FCAPS model to classify necessary support systems
– Offline: problem tracking, maintenance requests, and inventory

• Build or buy decisions
– First preference is to use open-source if available, appropriate, and

competitive
Develop re-distributable extensions as appropriate

– Second preference is to purchase COTS software
Evaluate cost per seat, educational discounts, and impact of restricted
access to system data

– Last choice is to build systems from scratch if no suitable
alternatives exist

FCAPS (Fault, Configuration, Accounting, Performance, Security)

• Fault management
– Detect and track component faults in running system
– Initiate and track the repair process
– Example systems: Nagios, HP OpenView, Micromuse Netcool

• Configuration management
– Automate and verify introduction of new GENI nodes
– Provision and configure new network links
– Track GENI hardware inventory across sites
– Examples: PlanetLab boot CD, Telcordia Granite Inventory,

Amdocs Cramer Inventory, MetaSolv
• Accounting

– Manage user and administrator access to GENI resources
– Map accounts to real people and institutions
– Examples: PlanetLab Central, Grid Account Management

Architecture (GAMA)

FCAPS (Fault, Configuration, Accounting, Performance, Security)

• Performance management
– Fine-grained tracking of resource usage
– Queryable by administrators and adaptive experiments
– Detecting and mitigating transient system overloads and/or slices

operating outside their resource profiles
– Examples: CoMon, HP OpenView, Micromuse Netcool

• Security management
– Log all security-related decisions in an auditable trail

Viewable by cognizant researcher and operations staff
– Monitor compliance with Acceptable Use Policy

Try to detect certain classes of attacks before they can cause
significant damage

– Examples: Intrusion detectors, compliance systems, etc.

Problem Tracking
• All researcher/external trouble reports, plus any

traffic incident reporting
– Examples: this filesystem seems corrupt, this API does

not seem to match the behavior I expect, or “why did I
receive this traffic?”

• Receive alerts/alarms from platform monitoring
system (e.g., Nagios, OpenView, etc.)
– Track all reported alarms, delegate to responsible

parties, escalate as needed
– Classify severity, prioritize development/repair effort

• Examples: Request Tracker (RT), Bugzilla,
IBM/Rational ClearQuest

Operations Support (31E)
1) GENI Fault Management System software (4E)
2) GENI Configuration Management System software (4E)
3) GENI Accounting Management System software (2E)
4) GENI Performance Management System software (3E)
5) GENI Security Management System software (2E)
6) GENI Problem Tracking System software (2E)
7) GENI Community Forum software (2E)
8) Lifecycle management of all software components (12E)

Communication Substrate
• Bulk data transfer.
• Small message dissemination (e.g., application

level multicast) for control messages
• Log/sensor data collection
• Information plane to provide topology information

about both GENI and the legacy Internet
• Secure control plane service running on GENI

– so that device control messages traverse over the
facility itself, and therefore cannot be disrupted by
legacy Internet traffic.

– essential if the facility is to be highly available.

Communication Deliverables (11E)
1. Bulk data transfer (e.g., CoBlitz or Bullet), to load

experiment code onto a distributed set of machines (3E)
2. Small message dissemination (e.g., application level

multicast) for control messages to a distributed set of
machines (1E)

3. Log/sensor data collection, from a distributed set of
machines to a central repository/analysis engine (3E)

4. Information plane to provide topology information about
GENI and the legacy Internet (1E)

5. Software maintenance and upgrades (3E)

Legacy Services
• Virtualized HTTP (2E)

– Allow experiments to share port 80
• Virtualized DNS (2E)

– Allow experiments to share port 53
• Client opt-in (12E)

– Assumes Symbian, Vista, XP, MacOS, Linux, WinCE
• Distributed dynamic NAT (2E)

– Connections return to source
• Virtualized BGP (backbone group)

Prioritization
High priority (“can’t live without it”): 60E

– Data transfer to set up experiments
– Local storage
– Resource allocation/mgt
– Operations support

Medium priority (“should have”): 50E
– Legacy services
– Quick and dirty experiment support
– Efficient disk storage
– Log data collection

Nice to have: 40E
– Information plane
– Simplified file system interfaces for execution
– More functional workbench
– Slice embedding

Notes:
– Security and edge cluster prioritized elsewhere (part of GMC)
– Prioritization also needed within each functional area (e.g., ops support)

Conclusion
• We understand most of what is needed to build

security, user support into GENI
– Lots of work still to do to refine design

• Comments welcome (tom@cs.washington.edu)
– Design not intended as a fixed point

mailto:tom@cs.washington.edu

	GENI Distributed Services Preliminary Requirements and Design
	Distributed Services Work Status
	Distributed Services Work Status
	Distributed Services Work Status
	Facility Software Architecture
	Facility Software Architecture
	User Centric View
	Principal Concerns
	Topics
	Security Architecture
	Threat model
	Requirements: Do no harm
	Modeling Access Control in Logic
	Traditional Access Control Lists
	A “Proof Carrying” Approach
	Authorization Example (simplified)
	Authentication and key management
	Capture-Resilience Properties
	Delegation in Capture-Protection
	Intrusion Detection
	Intrusion Detection
	Audit Log Example: PlanetFlow
	Packet Logging Architecture
	Performance
	Security Deliverables (21E)
	Security: Open Issues
	Topics
	Programmable Edge Cluster: HW
	Programmable Edge Cluster: SW
	Execution environments
	Service Location
	Booting
	Containment & Auditing
	Edge Cluster WBS Deliverables
	Open Questions
	More Open Questions
	More Open Questions
	Topics
	Storage for GENI
	Storage Goals
	Overall Storage Design
	Node-level Storage Support
	Distributed Storage Support
	Storage Deliverables (28E)
	Topics
	Resource Allocation Goals
	Existing Resource Allocation Model
	Example Allocation Policies
	Resource Allocation Proposal
	GENI Resource Allocation
	GENI Resource Allocation
	GENI Resource Allocation
	GENI Resource Allocation
	GENI Resource Allocation
	GENI Resource Allocation
	GENI Resource Allocation
	GENI Resource Allocation
	GENI Resource Allocation
	Additional Details: Donations
	Additional Details: Tokens
	Additional Details: Tickets
	Implementing RA policies
	Implementing RA policies (cont.)
	Implementing RA policies (cont.)
	Resource Alloc Deliverables (17E)
	Open Issues
	Resource Allocation Conclusion
	Topics
	Experimenter’s Support Toolkit
	Typical Experiment Cycle
	Desired Toolkit Attributes
	Toolkit as an Abstraction Layer
	Basic Toolkit Components
	Advanced Components
	Experiment Support (30E)
	Slice Embedding Deliverables (25E)
	Topics
	Monitoring
	Operations Support Issues
	FCAPS (Fault, Configuration, Accounting, Performance, Security)
	FCAPS (Fault, Configuration, Accounting, Performance, Security)
	Problem Tracking
	Operations Support (31E)
	Communication Substrate
	Communication Deliverables (11E)
	Legacy Services
	Prioritization
	Conclusion

