

G E N I

Global Environment for Network Innovations

GENI Security Architecture
Spiral 1 Draft 0.4

Document ID: GENI-SEC-ARCH-0.4

February 8th, 2008

Prepared by:
Alefiya Hussain and Stephen Schwab

SPARTA, Inc.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

2 of 32

Table of Contents
1. Document Scope ...3

1.1 Purpose of this Document..4
1.2 Related Documents..4

2. Security Overview...7
3. GENI Threat Model...9
4. GENI Trust Model .. 13
5. Security Guidelines ... 15
6. Security Mechanisms .. 17

6.1 Identity .. 17
6.2 Authentication ... 18
6.3 Authorization... 19
6.4 Access Control .. 20

7. Securing the GENI Control Frameworks ... 22
7.1 Definition .. 22
7.2 ProtoGENI .. 22
7.3 PlanetLab .. 23
7.4 TIED ... 24
7.5 ORCA ... 24
7.6 ORBIT .. 25
7.7 Analysis .. 25

8. Spiral I Action Items ... 28
9. Attribute Based Access Control... 30

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

3 of 32

1. Document Scope
This document is entitled GENI Security Architecture. It is a draft, intended to be a
living document more in the spirit of an IETF Internet Draft rather than a Request For
Comments (RFC) document that defines a protocol or standard. Over the course of the
first three GENI development and prototyping spirals, this document will track and
define, and at times lead, the state of security architecture, design, implementation and
issues on the collective mind of the GENI community. As a reader, your comments,
criticisms and suggestions are welcome and essential to progress.

GENI is an evolving system, whose state is captured most recently within the GENI
System Overview, GENI-SE-SY-SO-02.0. The GENI Control Framework Requirements
and Slice Based Facility Architecture documents describe the current abstractions and
architecture underlying the lowest layer of the system. While the scope of the GENI
Security Architecture is intended to be broad, our attention is focused on this lowest layer
for the moment, because it is essential to understand the tradeoffs and concerns facing the
prototyping efforts as they ready their spiral 1 systems for initial use. It is also essential
to distill the core security ideas underlying these core control frameworks to a minimum,
and then to restate these ideas in a neutral way, not tied to the particular implementation
choices which are intended to evolve over the lifetime of the systems. This is a
challenge, as we wish to speak concretely about aspects of real implementations for
clarity, but then extrapolate to draw lessons that apply to the architecture, and hence
many possible future implementations.

Before continuing, it is worth considering what the term security architecture means, and
to acknowledge that there is not necessarily a universal definition of this term. A number
of security services, such as confidentiality, integrity, availability, etc. may be considered
as the realm of a security architecture, without delving into the myriad details as to how
these are to be accomplished through various security mechanisms. Encryption and
cryptographic libraries, access control lists and enforcement functions, policy languages,
firewalls, and various operating system protection mechanisms may then be called upon
as mechanisms to realize the properties called out in the set of security services.
Alternately, security architecture can more broadly include the investigation of tradeoffs
between available security mechanisms, and consider such issues as the assurance
arguments that may be made in support of an overall system design using a specific set of
mechanisms.

As we consider the system over a wider range of its lifecycle, security architecture might
be widened as well to include the roles of individuals who will interact with the system;
the development tools and methodology used to construct the system, including pedigree
of software libraries, language tools and operating systems; the assurance process used to
validate that claims about security at design time are reflected in the final software
versions; and the on-going operational issues surrounding how security is addressed
during routine nominal processing and how security incidents are handled and resolved.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

4 of 32

All of these issues are in-scope, but ultimately GENI’s Security Architecture must focus
on providing answers that are consistent with the central questions facing the community
of researchers who will use it: What interfaces am I allowed to access? What operations
may I perform? What resources are available, and how are allocations of those resources
parceled out? And lastly, two dual questions: What data can I collect or access? What
access controls are placed on data I collect and share?

1.1 Purpose of this Document
This document defines the GENI threat and trust models, and secure operations
guidelines and mechanisms in support of the overall security requirements. It also
outlines the current approach of each control framework involved in development and
prototyping, and highlights unique security challenges in each of these five control
frameworks. This document furthermore introduces short-term action items relevant to
the current spiral’s deployment, as well as posing next step candidate mechanisms in
support of an evolving security architecture for GENI. It may be used as a guide in the
development of the control framework prototypes as they evolve in the current and
subsequent spiral cycles, in the sense that informed thinking on the part of designers
leads to approaches that address security concerns earlier and more comprehensively.
Within the overall GENI effort, this document falls under the OMIS working group but is
significantly linked to the Control Framework working group as well.

1.2 Related Documents
Some of the material in this document is drawn from the following documents listed
below.

Document ID Document Title and Issue Date
GENI-SE-SY-
SO-02.0

“GENI System Overview”, September 29, 2008.
http://www.geni.net/docs/GENISysOvrw092908.pdf

GDD 06-10 “Towards Operational Security for GENI," by Jim Basney, Roy Campbell,
Himanshu Khurana, Von Welch, GENI Design Document 06-10, July 2006.
http://www.geni.net/GDD/GDD-06-10.pdf

GDD 06-23 "GENI Facility Security," by Thomas Anderson and Michael Reiter, GENI
Design Document 06-23, Distributed Services Working Group, September
2006.
http://www.geni.net/GDD/GDD-06-23.pdf

SANS SANS Institute- Glossary of Security Terms.
http://www.sans.org/resources/glossary.php

GENI-SE-CF-
PLGO-01.2

PlanetLab GENI Control Framework Overview
http://groups.geni.net/geni/attachment/wiki/PlanetLabGeniControlFramewo
rkOverview/011409%20%20GENI-SE-CF-PlanetLabGENIOver-01.2.pdf

GENI-SE-CF-
PRGO-01.3

ProtoGENI Control Framework Overview
http://groups.geni.net/geni/attachment/wiki/ProtoGeniControlFrameworkOv
erview/011409%20%20GENI-SE-CF-ProtoGENIOver-01.3.pdf

GENI-SE-CF- ORCA GENI Control Framework Overview

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

5 of 32

ORGO-01.2 http://groups.geni.net/geni/attachment/wiki/OrcaGeniControlFrameworkOv
erview/011409%20%20GENI-SE-CF-ORCAGENIOver-01.2.pdf

GENI-SE-CF-
RQ-01.3

GENI Control Framework Requirements
http://groups.geni.net/geni/attachment/wiki/GeniControlFrameworkRequire
ments/010909b%20%20GENI-SE-CH-RQ-01.3.pdf

GDD 06-24 "GENI Distributed Services," by Thomas Anderson and Amin Vahdat,
GENI Design Document 06-24, Distributed Services Working Group,
November 2006.
http://www.geni.net/GDD/GDD-06-24.pdf

N/A "GMC Specifications," edited by Ted Faber, Facility Architecture Working
Group, September 2006.
http://www.geni.net/wsdl.php

GDD 06-23

"GENI Facility Security," by Thomas Anderson and Michael Reiter, GENI
Design Document 06-23, Distributed Services Working Group, September
2006. http://www.geni.net/GDD/GDD-06-23.pdf

GDD 06-10

"Towards Operational Security for GENI," by Jim Basney, Roy Campbell,
Himanshu Khurana, Von Welch, GENI Design Document 06-10, July 2006.
http://www.geni.net/GDD/GDD-06-10.pdf

N/A “Slice Based Facility Architecture,” Draft v1.02, November 3, 2008, by
Larry Peterson, et.al.
http://svn.planet-lab.org/attachment/wiki/GeniWrapper/sfa.pdf

N/A SHARP: An Architecture for Secure Resource Peering, 2003, by Yun Fu,
Jeffrey Chase, et.al.
 http://www.cs.ucsd.edu/~vahdat/papers/sharp-sosp03.pdf

N/A Sharing Networked Resources with Brokered Leases, 2006, by David Irwin,
Jeffrey Chase, et.al. http://portal.acm.org/citation.cfm?id=1267377

N/A ORCA Technical Note: Guests and Guest Controllers, 2008, by Jeff Chase
http://www.cs.duke.edu/nicl/pub/papers/control.pdf

N/A ORCA references:
 http://nicl.cod.cs.duke.edu/orca/

N/A ORBIT Testbed Software Architecture: Supporting Experiments as a
Service Maximilian Ott, Ivan Seskar, Robert Siraccusa, Manpreet Singh
http://www.orbit-lab.org/wiki/Orbit/Documentation/Publications

N/A ORBIT Measurements Framework and Library (OML): Motivations,
Design, Implementation, and Features, Manpreet Singh, Maximilian Ott,
Ivan Seskar, Pandurang Kamat
http://www.orbit-
lab.org/attachment/wiki/Orbit/Documentation/Publications/final-oml-
paper.pdf

N/A Overview of the ORBIT Radio Grid Testbed for Evaluation of Next-
Generation Wireless Network Protocols D. Raychaudhuri, I. Seskar, M. Ott,
S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu and M. Singh
http://www.orbit-
lab.org/attachment/wiki/Orbit/Documentation/Publications/Orbit_WCNC_0
5_final.pdf

N/A GENI Engineering Conference III – Presentations

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

6 of 32

http://groups.geni.net/geni/wiki/CFWGGEC3
N/A DETER Federation Daemon (fedd)

http://fedd.isi.deterlab.net/
N/A Access Control for Federation of Emulab-based Network Testbeds, Ted

Faber and John Wroclawski, In Proceedings of the CyberSecurity
Experimentation and Test (CSET) Workshop, San Jose, (July 2008)
http://www.usenix.org/events/cset08/tech/full_papers/faber/faber.pdf

N/A A DETER Federation Architecture, Ted Faber, John Wroclawski, Kevin
Lahey, Proceedings of the DETER Community Workshop on Cyper
Security Experimentation and Test, Boston, MA, (August 2007).
http://www.usenix.org/events/deter07/tech/full_papers/faber/faber.pdf

WJ03a Automated Trust Negotiation Technology with Attribute-based Access
Control, W. Winsborough and J. Jacobs, In Proceedings of the DARPA
Information Survivability Conference and Exposition, 2003, Vol. 2 pp 60-
62, April 22-24, 2003.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

7 of 32

2. Security Overview
The GENI testbed initiative is an exciting development for networking architecture,
protocols and service design as the infrastructure enables long-running realistic
experimentation that allows end users to opt-in to test the proposed experimental systems.
Thus GENI has more sophisticated security requirements than the traditional Internet
architecture.

It is worth considering for a moment how securing GENI differs from securing “the
Internet”. Ideally, one might pre-suppose that GENI and the Internet are both built out of
elements (e.g. end-systems and network gear, a.k.a. boxes) that speak various protocols
and are configured to do so by local or remote operators. At this level of abstraction, all
that is needed is a means to authenticate individual operators and authorize their various
commands and configuration changes on each box, plus incorporation of sufficiently
robust security features within each distinct protocol layer, e.g. secure ARP, secure
routing, secure naming, secure transport, secure QoS, etc.

From this viewpoint, all the problems of Internet security are “merely” because of the
inertia of maintaining backwards compatibility with the installed base, deployed
protocols, and customary organization and configuration of the existing Internet. If only
we had a clean-slate network deployment, everything could be revisited and done
securely. Since GENI could be such a clean-slate network deployment, according to this
line of reasoning, it is straightforward to design in all the necessary authentication,
authorization and security protocols and assure ourselves of an ideal, trustworthy system.

Unfortunately, the situation is not so simple. GENI, while affording the possibility to
create a clean-slate network architecture within an experimental slice, bootstraps itself
using clearinghouses, control frameworks, component managers and slice and
management authorities that rely heavily on Internet protocols. So while GENI may not
always be tied to the Internet architecture forever, during the prototyping spirals at least,
GENI security must consider all the insecurities inherited from the Internet. (As an aside,
deploying GENI entirely above a collection of encrypted VPN tunnels is feasible – but
probably not sufficient to enable the sorts of user opt-in experiments that are desirable.)

Moreover, it is far from clear that the state-of-the-art in network security would be
sufficient to build and deploy, at the scale envisioned for GENI, a suite of protocols and
complementary authentication and authorization technology to enable a cost-constrained,
trustworthy GENI ecosystem. For example, corporate and government PKI and
authenticated identity rollouts are notoriously expensive and difficult to maintain – can
GENI drive down the cost to manage such a large scale authentication and authorization
system, without compromising on security goals?

Additionally, GENI’s key strategy is growth via federation which allows incorporating
existing facilities into the overall GENI ecosystem and adding new technologies as they
mature, thus allowing GENI to be nimble and not commit to a single technology at the

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

8 of 32

start. However, this strategy will cause heightened concerns from users and network
operators about security as enforcing security properties in such an environment is
difficult, particularly since the requesters and resources will typically be managed by
different authorities and may have different authorization mechanisms.

Some of the most challenging aspects of securing GENI networks concern the
authentication support for authorization. Authorization decisions require the
authentication of the entity making a request. Authentication normally implies the use of
cryptographic techniques. But the application of existing cryptographic techniques to the
GENI networks environment presents certain challenges.

The identification of the principal itself in the GENI networks may be challenging.
Current Internet interactions are typically client-server, where the explicit individual
identity of the client and server are important. However, in a GENI network if we move
away from individual identities to attribute based identities and access control (X.509
Attribute Certificates, KeyNote and PolicyMaker) the aspects of the principal's attributes
that are important may change radically as it interacts with different components in the
GENI network. This is a stark change from the traditional Internet client-server model
where both have a common understanding of the identities or attributes that are
important. For example, within the principal's network, the individual's identity or
company role may be important. But beyond the immediate network of the principal, it is
not likely that the individual identity of the end user will be important. Aggregate
security attributes will be more likely to be used, which may be labels, groups, etc.
Furthermore, the aggregate attributes may themselves differ in different domains.
Consequently, there may be multiple and varying principal identities or attributes that are
important.

Also, secure protocols often rely on a well-defined notion of end-system address as a pre-
requisite for negotiating and establishing an authenticated communication channel. If a
GENI slice can re-define the very abstraction of end-system address, it may be difficult to
reuse older authentication protocols in a secure manner.

This draft discusses security requirements and issues in the GENI network with respect to
authentication and authorization in a distributed network. We discuss the leading risks in
such an environment and propose a solution to address those issues based on the current
control frameworks. We go on to describe a security architecture derived from our
experience and how mechanisms supporting such a security architecture may be
integrated in support of the larger GENI architecture.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

9 of 32

3. GENI Threat Model
GENI's scale, widespread deployment, and visibility will make it an inviting target for
attack, and thus careful attention must be paid to security in its design. In our view,
security considerations need to permeate every control framework and interface to be
defined in GENI. The text in this section is drawn from GDD 06-23 and discussions at
previous GENI Engineering Conferences. We begin with a diagram that illustrates how to
frame our thinking about GENI and the threats facing the system.

OUTSIDERS

OPT-IN USERS

RESEARCHERS

S
L
IC

E
 S

O
F
T
W

A
R

E

U
SER

S
’ S

O
FTW

AR
E

IN
T
E
R
N
E
T
 M

A
L
W

A
R
E

INFRASTRUCTURE

GENI SITE

OPERATORS

CONTROL FW

SOFTWARE

S
L
IC

E
 N

E
T
W

O
R

K
IN

G

U
S
E
R

 T
R

A
F
F
IC

IN
TER

N
ET T

R
AFFIC

Figure 1. The illustration presents rings of threats. At the center is the infrastructure with the
greatest privilege. Working outwards are rings including GENI researchers, opt-in users making use
of GENI experimental slices, and finally outsiders.

In terms of modeling threats, the GENI Infrastructure includes Clearinghouses, Control
Frameworks, Component Managers, Aggregate (Component) Managers, Slice and
Management Authorities, and everything else that supplies resources or facilitates the
management of users or resources within the GENI ecosystem. This is the base layer of
GENI, analogous in some ways to an operating system, albeit different in other respects.
We include threats to this infrastructure within the center ring – namely the privileged
GENI operators who interact with the various GENI elements, and the software running
on all these GENI elements. (Without loss of generality, we have labeled this control
framework software, but for clarity state that potentially any software running on a GENI
element that is part of the infrastructure is a threat, e.g. if any GENI operator or software
running on a GENI infrastructure element is malicious or compromised, then there are
serious consequences for the portion of the GENI ecosystem within their (or its)
purview.)

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

10 of 32

As we work outwards, GENI slices, including the GENI researchers, the software
running within that slice, and the networking behavior including traffic implemented
within that slice is a potential threat. Ideally, the consequences would be less serious if a
threat at this level attacks GENI than a threat at the infrastructure level. Threats at this
level should be eliminated once the slice is terminated. A goal of our security architecture
is to ensure that this situation actually occurs in practice, when GENI control frameworks
are deployed and operated in the real world.

Continuing outwards, opt-in users, with even less privileges should pose an even lower
risk to GENI if they turn out to be malicious. We consider the users’ network traffic, and
the users’ software also to be at this threat level. Note that the users’ software may be
executing on their end-system, and might be supplied by the GENI Researcher, might be
part of their standard OS and application suite, or may be a combination of both. Since
the software can act with all the powers wielded by the GENI opt-in users, it must be
considered indistinguishable from the GENI opt-in users, at least in terms of what threat
it may pose within our model. Lastly, GENI is of course connected to the Internet,
including whatever endemic Internet malware and traffic is present.

Considering this threat model, we recognize that there are three broad classes of attacks
that must be addressed by the GENI Security Architecture and by its operational
procedures. First, external attacks may be launched by outsiders on the GENI
infrastructure, either as a denial-of-service attack, or simply to gain control of GENI
resources. Second, and related, we need to contain and prevent the impact of accidentally
or maliciously misbehaving GENI experiments on the outside world; similarly, we must
limit the impact of attackers posing as legitimate GENI researchers. Third, we need a
level of isolation between experimental slices, so that GENI cannot be surreptitiously or
intentionally used by one researcher to disrupt another slice. We discuss these three
types of attacks in this section by providing a list of specific threats that the GENI
security architecture must address.

For the moment, we are deferring consideration of a fourth threat, that of a malicious
insider within the GENI infrastructure itself, and instead consider this set trustworthy.
While GENI will initially have a small community of operators and sites, and rely on
non-technical means to address this issue, we believe that as GENI scales and federates
with large numbers of other systems, this threat will need to be re-evaluated.

The threats are listed according to one estimate as to the relative frequency of that
particular type of problem; for example, accidentally misbehaving experiments are likely
to be a somewhat frequent occurrence on a platform designed to support experimental
investigation, while determined attacks against the GENI software are relatively less
likely, but more serious. Fortunately, many of the same technical solutions can be
applied to both root causes. Note that the threats we list below are not intended to be
completely mutually exclusive: systematic attacks against GENI may combine multiple
elements, and thus the facility needs to be able to deal with all of these types of problems
simultaneously.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

11 of 32

• Containing runaway experiments that cause unwanted traffic.

Experience with past control frameworks such as PlanetLab and
Emulab suggests that unintentional misbehaving experimental code will
be a common occurrence on GENI. We believe a process is needed to
assign and enforce specific, minimal privileges appropriate to each
experiment in addition to limiting experimental behavior such that all
unwanted traffic can be eliminated from the network once the
experiment slice is terminated.. Hence a novice user’s mistake will not
have global consequences on the Internet. This would require a rapid
“kill switch” to enable operations staff to quickly suspend the
misbehaving experiment .

• Isolating runaway experiments that disrupt the execution environment
for other experiments within GENI, e.g., by exhausting disk space or
file descriptors. These issues can be handled by providing stronger
isolation between experiments and by monitoring shared resources for
unexpected usage patterns. The GENI facility must also ensure that
hosting organizations are not put at significant risk for contributing
resources to GENI, and the GENI effort must take measures to
convince hosting organizations that problems are rare and dealt with
promptly.

• Containing the misuse of an experimental service by an end user, for
example, one example experimental service conceived for GENI is to
run a virtual ISP supporting a novel internal architecture. Such an
experimental ISP might be used by a malicious user to launder illegal
packets. We expect this set of concerns to be addressed by establishing
GENI-wide standards for experiments offering packet delivery services
(or their equivalent) to end users. For example, GENI might require
that an experimental ISP provide basic monitoring or tracing tools for
law enforcement enquires.

• Preventing and detection of theft or corruption of an experimenter’s
credentials to use GENI. Unfortunately, it is well-known within the
security community that users are often careless with the keys used for
authentication, if only because key compromises are silent until it is too
late. Carefully calibrating privileges to match the experimenter’s
sophistication is one avenue (e.g., users likely to be careless with their
keys would be given more limited privileges); another is to use
technical means discussed in subsequent sections to make it more
difficult for attackers to gain access to user keys. Also, since end host
corruptions are endemic on the Internet today, we need to make it easy
for the GENI operations staff to revoke and replace end user keys and
privileges after such break-ins. Even so, this is perhaps the most likely
avenue for malicious attacks against GENI.

• Denial of service attacks against the GENI infrastructure. GENI should
fail “off” to avoid providing an avenue for an attacker to take control,

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

12 of 32

and then use denial of service to prevent the operations staff from
taking countermeasures. Technically, this can be accomplished by
requiring privileges to be frequently refreshed.

• Direct attacks against vulnerabilities in the GENI management
software. GENI is a complex distributed system, and therefore special
care must be taken to avoid vulnerabilities in its implementation. One
step is the explicit modeling of trust relationships between GENI
components as described below. Another important step is to observe
that the software development processes adopted for GENI software are
critical to the security of the GENI facility.

• Privacy of experimental data and the privacy of management policy.
Preventing unauthorized access to information stored in GENI can be
accomplished using the flexible access control architecture described
later in the document. However, preventing all forms of information
leakage while an experiment is running is an open research challenge.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

13 of 32

4. GENI Trust Model
The GENI Security Architecture will assume that the common security practices will be
in place. For example, it is important to actively manage all GENI hardware, e.g., to
proactively keep all operating system software up to date with known security patches.
This means that any changes GENI makes to host software is minimal, so that patches
can be applied quickly. Another important step is that components should be configured
with the minimal number of open ports. Also, it is important to instrument the GENI
hardware to discover problems quickly, that is, enabling continuous monitoring for
anomalous node behavior by GENI operations. (This is of course made more
complicated by the fact that the experimental architectures and services running on top of
GENI may be by their very nature, anomalous!) Once anomalous behavior is detected, it
is imperative that it is analyzed and fixed rapidly. The emergence of trusted computing
hardware and the integrity measurement architectures should provide a mechanism for
GENI operations staff to reset every node in GENI to a known, good state.

As stated in the earlier GENI Facility Security document, GDD 06-23:

Additionally, the GENI security architecture also assumes good software
development processes are used for all software that is deployed on the
GENI facilities. It is well-known that poor software quality is the source
of numerous types of serious security vulnerabilities in practice (e.g.,
buffer overflows and format-string vulnerabilities). We believe it is
imperative that sound software development processes be adopted by the
GENI community so as to eliminate, to the extent practicable, these types
of vulnerabilities. While specifying software development processes is
outside the scope of this document, an example might be that all GENI-
defined interfaces and protocols be adopted only after an open, public
review of potential security vulnerabilities, that changes to interfaces be
made only through a similar formal process, and that conformance tests be
generated (ideally, automatically) from a formal specification of the
interface. We also suggest, where practical, all GENI software should be
implemented to be type-safe, using tools such as CCured or languages
such as Java. In cases where type-safety is impractical, as in modifications
to an existing operating system implemented in C, standard practices such
as software verification tools and test suites can be used to reduce the
likelihood of vulnerabilities. We also believe that serious consideration
should be given to requiring that source code produced for GENI be made
public, so as to allow for independent security analysis. However, we do
not believe it is a cost-efficient use of GENI resources to require every
aspect of the management software to be robust to arbitrary malicious
attacks by privileged insiders (so-called Byzantine attacks). Rather, we
intend to rely on detection, confinement and resetting to a known good
state to correct intrusions when they occur.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

14 of 32

A GENI researcher should not have to trust all the nodes, network environments, and
other end users of the GENI network. There are few ways to assure the researcher that
their data will be protected from attacks (exposure, unauthorized use or modification) by
the node or the network environment where the data is processed in the clear. The
researcher may apply end-to-end cryptographic protections against these attacks and not
make the node privy to the cryptographic keying material, so that the data is never
represented in clear-text on the node. While end-to-end cryptographic protection limits
the damage that the node can cause to the data, it also limits the network services that can
be performed. When considering protection against unauthorized access, or use attacks
on the end user's data from other end users or slices in the infrastructure, the situation is a
bit more reassuring. The nodes in the GENI environment can provide enforcement of the
researcher’s authorization policy, as long as they have the ability to authenticate the
principals associated with each experiment and are provided the researcher’s policy.
However, note that in both cases, we are ultimately driven toward a model of explicit
trust – researchers need the flexibility to explicitly describe which resources in the GENI
substrate they trust, and to what degree, because technical means alone can not ensure
that all substrate resources are trustworthy.

Similarly, it should not be necessary for the components or component managers to trust
the rest of the GENI substrate that it is connected to. It would certainly be unwise to
architect the system so that it must trust all researchers and all adjoining interconnected
GENI components. The GENI architecture grants the Component Manager (CM) the
authority to start and manage slices locally. All requests from the CM for slice services
will be on the behalf of the experimenter to provide services for an experiment. The
component implicitly trusts the CM to adhere to the authorization and access control
policies when requesting services. A component owner pre-establishes resource
allocation policies regarding how the component's resources are assigned to GENI
researchers. In summary, explicit models of trust, represented by entities within the
GENI ecosystem, seem necessary to provide for local decision making over a large set of
components and their owners.

In this version of the GENI security architecture we have concentrated on authorization
enforcement to protect GENI networks and the authentication to support authorization
enforcement. These ideas are further explored in the subsequent sections.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

15 of 32

5. Security Guidelines
In this section we first summarize the high level guidelines that should be embodied in all
GENI software, rules, and policies. They are drawn from GDD 06-10 and GDD 06-23
and discussions at the GENI Engineering Conferences.

Security considerations place several guidelines on the GENI architecture:

• Explicit Trust: Privileges in a distributed system should be managed
explicitly and formally. Enforcing security in GENI will be something
of a moving target, as the facility will be used during its construction,
and will progress from a single, centralized management entity to a
federated, decentralized model. Thus we need a security model that
can evolve along with GENI. We need to define access control
approaches that provide the required flexibility, rather than hard-coding
trust relationships. Without explicit trust, it is likely that trust will be
unintentionally misplaced, leading to system-wide vulnerabilities that
can be exploited by a determined attacker.

• Least Privilege: The principle of least privilege is a tenet of computer
security that requires each component of a system be given exactly the
authority it needs to perform its tasks and no more. Failures to
implement this principle are ubiquitous, and we face the consequences
frequently. For example, most web servers do not need to be able to
open connections to arbitrary addresses in order to perform their tasks.
Yet this is permitted, and exactly this ability has been used numerous
times in the epidemic spread of worms. While achieving least privilege
in an absolute sense is arguably not feasible, it is our belief that the
GENI facility should embrace least privilege as far as is practicable.
Least privilege can secure the GENI facility from malicious software,
accidental violations, or just simple resource exhaustionsin general,
it can mitigate the risks caused by runaway experiments. It is also
equally useful in securing the experimenter's environment against
attacks from other experiments or faulty system software.

• Revocation: Despite our best efforts, it is inevitable that keys, slices,
and systems will be compromised in GENI. Thus a critical requirement
for GENI is to be able to quickly revoke and replace keys, suspend all
permissions (e.g., slices) derived from a compromised key, and reset
each node to a known secure state.

• Auditability: The possibility of compromise also requires us to be able
to trace why a problem occurred so that it can be prevented from
recurring. GENI needs to develop mechanisms that identify which
slice is responsible for each packet, and also be able to determine the
entire chain of responsibility (from central administrator to local
administrator to local user) that gave the user a specific capability that
was misused.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

16 of 32

• Scalability: With large-scale distributed systems such as GENI, simple
schemes such as using a small set of authentication servers and/or
replicating information required by authentication and authorization
tasks are not feasible. We propose a scalable authorization architecture
below.

• Autonomy: A key requirement for GENI is the ability to federate
autonomous facilities. A GENI site should be able to authenticate and
authorize requests from users in other sites, support delegation of
rights, and it should be able to do so without requiring centralized trust.

• Usability: The user must be explicitly modeled as part of the security
architecture. Any system that is hard to use will be evaded and
ignored. The implication is that GENI needs to develop intuitive and
easy interfaces for users to create roles, restrict rights, etc. GENI also
needs to make it easy for users to protect their private keys. In essence,
secure system and user behavior must happen naturally, in the course of
operating or using the system.

• Performance: As with usability, the performance overhead of
providing security needs to be modest, or users will have an incentive
to disable or evade the system. In practice, this means managing
security information (such as certificates delegating rights to a specific
set of users) locally as far as possible, as cache-coherent, distributed
state. Caching means that lookups can be fast in the common case,
without compromising system semantics.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

17 of 32

6. Security Mechanisms

Over the course of the development and prototyping spirals, we anticipate enumerating a
substantial set of security mechanisms that play a role in securing the GENI system. We
start with a small set of mechanisms that well designed secure systems will need to
incorporate into their solutions. The four mechanisms listed below include identity,
authentication, authorization, and access control. In this draft we do not address
accounting or the related privacy of accounting information. The GENI Meta-Operations
Center (GMOC) project will be continuously gathering information from the GENI eco
system to detect various type of system and network violations, for example exceeding
the resource of a slice set by an aggregate manager, or reports of abuse and other policy
violations. We believe the security architecture can leverage that information for its
needs.

6.1 Identity

Identity is defined as whom someone or what something is, for example, the name by
which something is known. Traditionally, identity requires identifiers—strings or tokens
that are unique within a given domain, (that is globally or locally within a specific
network, directory, application). Identifiers are the key used by the parties to an
identification relationship to agree on the entity being represented. Identifiers may be
classified as resolvable or non-resolvable. Resolvable identifiers, such as a domain name
or e-mail address, may be referenced into the entity they represent, or some current state
data providing relevant attributes of that entity. Non-resolvable identifiers, such as a
person's real-world name, or a subject or topic name, can be compared for equivalence
but are not otherwise machine-understandable.

In a federated environment such as GENI, an identity could be a union of a principal’s,
information stored across multiple distinct identity management systems. The databases
could be joined together by the use of a common token. A principal's authentication
process will thus occur across multiple networks or even across several organizations.

The GENI Management core [GENI-SE-SY-SO-02.0] defines unambiguous identifiers—
called GENI Global Identifiers (GGID)—for the set of objects that make up GENI.
GGIDs form the basis for a correct and secure system, such that an entity that possesses a
GGID is able to confirm that the GGID was issued in accordance with the GMC and has
not been forged, and to authenticate that the object claiming to correspond to the GGID is
the one to which the GGID was actually issued.

Specifically, a GGID is represented as an X.509 certificate that binds a Universally
Unique Identifier (UUID) to a public key. The object identified by the GGID holds the
private key, thereby forming the basis for authentication. Each GGID (X.509 certificate)
is signed by the authority that created and controls the corresponding object; this
authority must be identified by its own GGID. There may be one or many authorities that

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

18 of 32

each implement the GMC, where every GGID is issued by an authority with the power
and rights to sign GGIDs. Any entity may verify GGIDs via cryptographic keys that lead
back, possibly in a chain, to a well-known root or roots. Every entity within GENI will
have a GGID for accountability and these identities will map to real world identities such
as email and physical location address. A principal may have multiple identities.

6.2 Authentication
Authentication verifies the identity of a principal in GENI. It is a key aspect of trust-
based identity attribution, providing a codified assurance of the identity of one entity to
another. Traditionally, authentication and identification mechanisms rely on maintaining
a centralized database of identities, making it difficult to authenticate users in different
administrative domains across federated networks. Each federated network keeps track of
it’s users in a users account database and hence granting access to resources across
networks is challenging.

Authentication methodologies include public-private (asymmetric) key pairs, the
provision of confidential information such as a password, or utilizing encryption
methodologies. The use of a Public Key Infrastructure (PKI) will allow establishing
strong identities for facility users. Although PKIs are hard to bootstrap, GENI has a
natural advantage since every site will have a local administrator who can establish and
vouch for the credentials for each specific GENI research user and physical device.
Authentication is required for both the network (local site) facility itself, to grant access
to applications and services and provide a basis for resource isolation, but also for
applications and users. A flexible and accessible public-key or other authentication
service, along with the software libraries and resources to manage it, will facilitate the
operation of GENI and the development of a large range of applications on top of it. This
service must include the development of libraries to allow a variety of applications to use
the service and the development of guidelines for how and when applications should use
the service.

Even though GENI will allow an entity to have multiple identities, authentication is still
required in order to verify that the identity presented for a particular GENI operation is a
valid registered identity. The authentication in this case is of the GGID itself, and not of
the entity represented by it.

As mentioned in section 6.1, a GGID binds a Universally Unique Identifier (UUID) to a
public key. The object identified by the GGID holds the private key, thereby forming the
basis for authentication. Each GGID is signed by the authority that created and controls
the corresponding object; this authority must be identified by its own GGID. A name
repository maps strings to GGIDs, as well as to other domain-specific information about
the corresponding object. There may be multiple name repositories. Depending on the
entity, the domain-specific information can be any of the following: (a) the URI at which
the object’s manager can be reached, (b) an IP address, (c) a hardware address for the
machine on which the object is implemented, (d) the name and postal address of the
organization that hosts the object.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

19 of 32

6.3 Authorization
Authorization is the process of allowing access to resources only to those permitted to use
them. In GENI the resources include data, slices, component devices, network bandwidth,
and functionality provided by services. The problem of authorization is often thought to
be identical to that of authentication; however, more precise usage describes
authentication as the process of verifying a claim made by a entity that it should be
treated as acting on behalf of a given principal (person), whereas authorization is the
process of verifying that an authenticated subject has the authority to perform a certain
operation. Authentication, therefore, must precede authorization and many times the term
authorization is used to mean the combination of authentication and authorization.

Authorization determines the access control rights of an entity (is user X allowed to
access resource R?) and it is implemented as permissions; either an access control list or
a capability. The traditional way of performing authorization is to lookup a user’s rights
in an access control matrix, which has rows that represent users and columns that
represent resources. The value in the matrix represents the access permission sets. An
access control matrix is mostly a conceptual thing, a way to model how actual access
control is done. If you actually implemented a matrix it would be very sparse, and hence
other techniques are used to represent the matrix in a more efficient ways. Each column
represents the access control list for the resource it denotes and lists all entities that are
authorized to access the object along with their access rights. It must be stored
somewhere related to the resource, most probably at the Aggregate Manager. Also, the
identity of an entity must be known before access rights can be looked up in the ACL.
Thus, authorization depends on prior authentication and systems that rely on ACLs for
authorization must use a decentralized authentication mechanism to work across
administrative boundaries.

The rows in an access control matrix represent the access capabilities a user has to
various resources in the system. Capabilities correspond to rows of the access control
matrix and thus a capability is an unforgeable token that identifies (names) one or more
resources and the access rights granted to the holder of that capability. Any user that
possesses a capability can access the resources listed in the capability with the specified
rights. In contrast to ACLs, capabilities do not require explicit authentication. However,
it is typically the case that an initial set of capabilities is distributed only to an entity after
authentication to some trusted service that merits these capabilities. Capabilities can also
be transferred among entities, which make them suitable for authorization across
organizational boundaries. Because capabilities explicitly list privileges over a resource
granted to the holder, they naturally support the property of least privilege. However,
because possession of a capability conveys access rights, capabilities must be carefully
protected against theft (e.g. unauthorized transfer). In addition, capabilities may make it
more difficult to perform auditing or forensic analysis. Especially for large-scale
decentralized systems such as GENI where the logs themselves or the meaning of the
information contained in the capabilities may be spread across several networks,
collecting all the necessary information may involve considerable effort.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

20 of 32

Permissions are traditionally based on the principle of least privilege discussed above
where an entity is granted specific permissions that they need to do their jobs and no
more. Exceptions to this principal may allow some “trusted” principals that are granted
unrestricted access to resources, such as for monitoring usage on the network.
Anonymous or guest entities that are not required to authenticate themselves are given
very few permissions, although even a limited degree of access may be problematic.
Psuedo-anonymity of various types may be used instead of truly anonymous access,
although we defer this point to future prototyping spirals.

The main function of the GENI control frameworks is to allow the authorization and
assignment of resources from multiple GENI or federated aggregates to GENI
researchers following pre-established policies. This will involve the interaction of a
variety of elements, such as, the researcher, the designated slice, the aggregate, (including
its resource availability and local policies), policies associated with other entities, (such
as the GENI clearinghouse or an intermediate broker), policies based on other
parameters, such as researcher/slice lineage and status, and lastly, resource availability.

In all cases, a decision to grant a resource is made as a request from a researcher to an
aggregate. In a simple case, supported by the current control framework architecture, an
aggregate can check the slice lineage of a request against a local list of supported slices.
However, ideally the control framework architecture should support richness in resource
allocation and policy mechanisms. In particular, there should be a way to include policies
that are associated with a clearinghouse or an intermediate broker.

The GENI control framework makes use of exchange of tokens (called credentials or
tickets) to authorize principals within GENI. These tokens are then used to permit access
to registries and authority services and are also used to authorize resource assignment and
management. Further, tokens must be signed (certified) by the appropriate authorities and
objects (principals, aggregates and slices) to associate value to them in the GENI
network. This approach to authorization is very flexible, allowing entities to be widely
dispersed and even disconnected for a short period within the GENI network.

Various resource allocation and policy mechanisms will be explored in Spiral 1
implementations and are discussed in the subsequent sections. The above authorization
approach is widely used within the ORCA control framework.

6.4 Access Control
The core of our proposed security architecture for GENI is a pervasive and unified access
control infrastructure. Access control refers to the mechanism used to reach a yes-no
decision as to whether an access request should be granted. The decision is typically
reached by a resource monitor based on security policy defined for the resource. The
goal of the ABAC architecture we propose in Section 8 is to provide a unified and yet
flexible mechanism for resource monitors to reach such decisions. Access control is often
intimately tied to authentication and authorization as discussed above, however, we
propose separating the entities authentication mechanisms from access control especially
for components. We propose using access control methods that are not based on the

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

21 of 32

public—private key pairs to provide additional flexibility that may be useful for certain
classes of components that may not have the resources to support PKI.

All access rights for slices originate with a Slice Authority (SA) and it is responsible for
approving the research users associated with the slice. All rights regarding component
resources originate at the Management Authorities (MA). The MAs define the resource
allocation policies for the components they manage and approve all research users that
operate those components. Each component implements a resource allocation policy that
determines how many resources, if any, to grant each slice. A researcher that is granted
the instantiate capability for a given slice can be viewed as having the right to ask for
resources from the component—the credential essentially confirms that some slice
authority vouches for the slice—but it is up to the component to decide if it is willing to
host the slice, and if so, how many resources to grant it.

Table 1 below summarizes the four security mechanisms and possible implementation
strategies in GENI.

Terms Definition [SANS] GENI Mechanism
Identity It is who someone or what

something is.
GGID

Authentication It is the process of
confirming the correctness
of the claimed identity.

GGID along with the key
and name authority for
mapping the keys

Authorization It is the approval,
permission, or
empowerment for someone
or something to do
something.

Certified tokens, and
Credential tickets and
capabilities

Access Control It ensures that resources are
only granted to those users
who are entitled to them.

Slice Authorities to control
access to the experiment,
Management Authorities to
control access to
components with attribute
based access control.

Table 1. Candidate Security Mechanisms

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

22 of 32

7. Securing the GENI Control Frameworks
In this section we discuss the various control frameworks that are part of GENI focusing
primarily on the security aspects and challenges we will face when they are federated
together. For completeness, we include a brief description of the operational aspects of
the control frameworks. This section borrows heavily from the following documents:
GENI Control Framework Requirements GENI-SE-CF-RQ-01.3, ProtoGENI Control
Framework Overview GENI-SE-CF-PRGO-01.3, PlanetLAB Control Framework
Overview GENI-SF-CF-PLGO-01.2, ORCA GENI Control Framework Overview GENI-
SE-CF-ORGO-01.2, ORBIT talks and TIED talks at GECs.

7.1 Definition
The GENI control framework is defined in the GENI Control Framework Requirements
document at http://geni.bbn.com:8080/docushare/dsweb/Services/Document-1234 .
A control framework has a clearinghouse consisting of principal, component and slice
registries, along with the offered services. Principals typically will use tools and act as
clients of the control framework. The services offered by the control framework will in
most cases be associated with aggregates within the architecture. Each control framework
in GENI will unique define interfaces between all entities, planes for transporting
messages between all entities, message types, including basic protocols and required
functions, message flows necessary to realize key experiment scenarios.

Additionally, there should be mechanisms to federate with other control frameworks in
the GENI architecture. The GENI control framework requirements are presented in the
GENI Control Framework Requirements document produced by the Control Framework
WG at http://geni.bbn.com:8080/docushare/dsweb/Services/Document-1234 .

7.2 ProtoGENI
ProtoGENI is essentially a control framework that is based on the Emulab production
systems and subsystems enhanced for the unique challenges faced in the GENI
environment. The design is based on the knowledge that all entities that ProtoGENI will
authenticate have unique global identifiers. ProtoGENI implements a single Public Key
Infrastructure (PKI) server which covers authentication of all registries, aggregates and
principals. This PKI provides all necessary certificates, and allows verification to be done
using a limited number of root certificates. Since it is in a prototype state, it assumes the
number of trusted "roots" will be small and can exchange root SSL certificates out of
band to populate a certificate directory that can be used for verifying client certificates
when they are presented. ProtoGENI does not currently use or implement GID chains but
will do so in the future to inter-operate with other GENI Spiral 1 implementations.

Authorization in the ProtoGENI system is initiated by the exchange of credentials that
facilitate resource authorization and access control by aggregates. The credentials are
signed (certified) by the appropriate authorities (slice) and objects (aggregates and
slivers) to give them some intrinsic value. These are then certified by an authority or

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

23 of 32

object by signing the token using its own private key, followed by signatures from its
responsible authorities, up to the root authority. In the current implementation, there is
always only one signature. The Public Key Infrastructure (PKI) that is used to
authenticate principals provides all of the keys and other structure to sign and verify
credentials. The aggregate that receives this token can then verify it using a set of root
certificates.

The ProtoGENI suite thus uses certificates and credentials to authenticate entities. This
approach however combines identity and authentication mechanisms. At this stage, the
role of UUID is also not completely defined within the prototype.

7.3 PlanetLab
PlanetLab is a system that allows researchers to conduct experiments on hosts located at
various locations around the world, by providing a global research network that supports
the development of new network services, distributed storage, network mapping, peer-to-
peer systems, distributed hash tables, and query processing.

The PlanetLab prototype is based on the GeniWrapper module that defines the classes to
implement GID, credentials, tickets, as well as an underlying secure remote invocation
mechanism. These classes are contained in the /util directory of the module. It also has
the registry, slice, and management interfaces exported by the aggregate manager (AM)
and slice registry (R). These classes are contained in the /plc directory of the module.
Additionally, it has the component classes that implement the slice and management
interfaces exported by the component manger (CM) co-located with the node manager of
each node. These classes are contained in the /component directory of the module.

In the PlanetLab GENI suite, each registered entity (principal and component) has a
Global Identifier (GID) that includes a UUID and the entity’s public key. The UUID is a
unique random number. The authentication of a principal is done by the server at a
registry, slice or management interface. Both the client and server specify their private
and public keys when opening an SSL socket, and exchange public keys (the key is
stored in an X.509 certificate). All subsequent actions contain a credential that consists of
the GID of the caller, which in turn contains the public key of the caller. The server
ensures that this public key matches the public key that is being used to decrypt the
HTTPS connection’s session key, thus ensuring the caller must possess the private key
that corresponds to the GID.

In PlanetLab a PKI and X.509 certificates are utilized to cryptographically sign and/or
verify information. Currently in the prototype, one PKI covers all principals and entities.
The GeniWrapper (http://svn.planet-lab.org/wiki/GeniWrapper) uses two crypto libraries:
pyOpenSSL and M2Crypto to implement the necessary cryptographic functionality and
the X.509 certificates, while public-private key pairs are implemented by the Keypair
class.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

24 of 32

7.4 TIED
Trial Integration Environment built on DETER (TIED) is a testbed based on Emulab
software that is specifically enhanced for security research by providing test suites,
methodologies and tools for network security tests. TIED allows on-demand creation of
experiments spanning multiple independently controlled facilities enabling federated
experiments to create a coherent distributed environment, manage federated resources by
applying appropriate security mechanisms, and provide a unified runtime environment to
the researcher and experiment. The TIED federator translates experiment requirements
encoded in a canonical experiment description language and maps them to a federated
experiment across multiple testbeds transparently for the experimenter.

All users, projects and testbeds have a globally unique name. All federants honor access
based on proof of name and prior vetting of the user. Access control within the TIED
control framework is managed at the project level, that is, projects control resource
access, each user’s project membership level determines access to project resources. The
TIED authorization framework is built on the assumptions that the federated testbeds will
be decentralized with alliances changing frequently. However, it is also necessary to
support multiple trust models, (for example, hierarchical PKI, PGP web of trust) and
explicit decision making in TIED-based testbed federations.

TIED also uses Attribute based Access control; a principal’s identity is established by
local authorities using local techniques, principal’s attributes are determined locally and
established by digitally signed credentials. The attributes and rules will drive a reasoning
engine that determines authorization decisions.

7.5 ORCA
Open Resource Control Architecture (ORCA) is an extensible architecture for on-demand
networked computing infrastructure. It can be viewed as a service-oriented resource
control plane hosting diverse computing environments (guests) on a common pool of
networked hardware resources such as virtualized clusters, storage, and network
elements.

The ORCA GENI control framework consists of four main agents: brokers, domain
authorities, service managers, and identity providers. The broker provides most of the
clearinghouse functions. The ticket broker service issues all tickets to experiments. The
domain authorities provides the functionality of an aggregate manager and delegate
splittable tickets to the broker service, and attempt to honor any tickets issued by the
broker. The service managers facilitate principals to setup and manage experiments
whereas identity providers vouch for principals. The broker service also maintains a
principal registry containing the public keys of identity providers and registered user. The
service accepts any user with a registered public key, or bearing an X.509 certificate
endorsed by a registered identity provider.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

25 of 32

The ORCA GENI control framework, authentication and authorization are based on
digitally signed messages (WS-Security) and the Java Cryptography Architecture (e.g.,
keystore files). Access control is through tickets issued by the domain authorities to
brokers who are responsible for delegating control over resources. Every actor is
identified by a GUID and possesses a keypair for authentication. Each actor has access to
a registry of the GUIDs and public keys of other actors that are known to it. Actors sign
their messages with their private keys, and authenticate messages based on their
knowledge of the sender's public key.

7.6 ORBIT
Open Access Research Testbed for Next-Generation Wireless Networks (ORBIT) radio
grid testbed is developed for scalable and reproducible evaluation of next-generation
wireless network protocols. The ORBIT testbed consists of an indoor radio grid emulator
for controlled experimentation and an outdoor field trial network for end-user evaluations
in real-world settings.

ORBIT delegates approval of user accounts to their associated institutions. A principal
investigator from each institution registers with ORBIT. Each subsequent user account
request from that institution then needs to be approved by the principal investigator.

Using a reservation calendar system, users can request sole access to an ORBIT resource
for a specific timeslot. Requests are approved by the ORBIT facility. If multiple users
request the same resource during conflicting time slots, ORBIT resolves these conflicts
using resource allocation policies that take into account the users past resource usage.
ORBIT features several different resources: the large radio grid with wireless
instruments, several 2-node sandboxes with diverse radio hardware, an office testbed
setup, and ORBIT stationary and mobile outdoor nodes. Different users can obtain
reservations on different resources at the same time, but only one user is permitted at any
give time on each resource. The ORBIT console implements time-based access control
policies, allowing user access to the reserved resources only during the reservation
window.

ORBIT also provides access control to the experiment data repository. By default
collected data is only available to the user that executed the experiment.

7.7 Analysis
Each of the control frameworks is pursuing a different path toward securing the GENI
model as they incrementally work toward realizing a fully GENI-compliant
implementation. This analysis is an attempt at a high-level characterization of the design
space currently being explored by the five cluster control frameworks, and a comparison
of how these approaches compare and contrast.
ORBIT has created a secure access mechanism at the perimeter of the system, currently
an aggregate manager equivalent. PlanetLab has similarly created a secure access
mechanism centered on an aggregate manager, but in this case the implementation
provides a functional interface and abstractions that are semantically close to those

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

26 of 32

described in the GENI control framework requirements documents. As the PlanetLab
security mechanisms fully incorporate the RSpec definition for describing resources, it
may become possible to apply the same structure to solving resource allocation problems
within ORBIT. However, the wireless networking environment may pose challenges,
especially in describing access to allocations of shared resources.
ORCA and ProtoGENI, in contrast, both are pursuing implementation strategies that
incrementally support goals of the GENI control framework but critically provide for
multiple manangers. Resource managers in ORCA are close to component managers in
the GENI semantics, while each member of a ProtoGENI federation is close to an
aggregate manager in terms of resource aggregation and control over allocation. A
critical distinction is that ORCA passes authorization rights between the various entities
in the system, while ProtoGENI appears to focus on passing authentication information,
leaving authorization and fine-grained allocation decisions tightly bound to the aggregate
managers (e.g. the Emulab or Emulab-like clusters acting in the role of aggregate
managers in the prototype.)
TIED eschews the definition of low-level interfaces at the semantic level of the
component manager, and instead inherits the interface and implementation presented by
existing testbed software, currently the Emulab implementation underlying the DETER
testbed. However, the security mechanism is essentially agnostic as to what specific
testbed interface resources are to be allocated from. So long as the user’s global
identifier can be mapped to a local user identifier on each testbed, authorization decisions
can be made locally. However, the TIED approach allows more information than the
global or local identifiers to be interpreted on the global (portal or clearinghouse) side of
the interface vs. the local (aggregate or component manager) side of the interface. This
architecture may sit somewhere between ORCA and ProtoGENI as the implementation
matures. Note that the conflation of the global identifiers (clearinghouse) with the local
identifiers (Emulab, DETER, PlanetLab, etc.) may make it difficult to analyze where
decisions are being made at the semantic level of a clearinghouse vs. an aggregate or
component manager.
(N.B. This analysis is incomplete as of this draft.)

Cluster
Framework

Current Security Choices

ORBIT Identification using login information and public-private key pairs, no
fine grain access control and authorization.

ORCA Authentication tokens represent identity of the guest. The
authentication tokens encapsulates opaque state for authentication or
authorization specific to the monitor for the resource. It has an identity
credential associated with it which is the basis for all access control
decisions. Per-object access control lists control access of all system
resources.

PlanetLab Entities have Global Identifier (GID) that includes a UUID and the
entity’s public key. The authentication of a principal is done by the
server at a registry, slice or management interface. PKI and X.509
certificates are utilized to cryptographically sign and or verify

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

27 of 32

information.
ProtoGENI Authentication is based on a GGID represented as an X.509 certificate

that binds a Universally Unique Identifier (UUID) to a public key.
Authorization is initiated by the exchange of credentials that facilitate
resource authorization and access control by aggregates

TIED Identity established by local testbed authorities, through username plus
passwords or certificates. Principals have attributes that are used for
access control.

Table 2. Choices of Security Mechanisms in D&P GENI Control Frameworks

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

28 of 32

8. Spiral I Action Items

Prior to, or shortly after stand-up of GENI control framework or other prototype GENI
facilities, a review of the following action items is recommended. These are for guidance
only, but may be helpful in evolving a standard way in which the GENI community
operates, especially with respect to security issues.

1. Trusted Root Certificates. If the implementation supports, sign all trusted root
certificates with a different super-root certificate. Then remove the super-root private
key from any on-line system and store off-line (two backups.) While not absolutely
necessary, this will provide a way to create new trusted root certificates without self-
signing. Also, trusted root certificates should probably have a 13-month lifetime, with
the idea being that GENI prototypes plan to test rollover of their trusted root certificates
after 12-months. If possible, a revocation format for certificates should be defined.

2. Physical security audit. It would be good practice to identify where the security
servers or other testbed supervisor machines are located, and document who (individuals
or class of individuals) have access.

3. Super-user audit. Similarly, identify who has root or equivalent access to the testbed
supervisor machines, either at the local machine level or via privileges or rights being
enabled in their GENI personal certificates. If possible, super-users should have non
super-user certificates (or equivalent methods) to support doing work as ordinary GENI
researchers vs. super-users managing/administering the GENI site.

4. Review of security relevant source code. A full red-team is not needed at this point for
prototypes, but it would be helpful to have two individuals, other than the developers who
wrote the security software review the design and source code. This could be as simple
as a set of slides describing the software and a meeting to walk through the source code.

5. Operator and Facility POC information. In the future, a GENI operations facility may
be able to field problem alerts and remotely kill slices or remotely shut down elements of
the GENI substrate as an emergency response of last resort. In the short-term, having
good current contact information (name, email, phone, physical location) for the
operators of a GENI site and the facility (building or campus manager) where those
GENI machines reside would be useful, to assist the GPO in responding to any problems.

6. Written Usage Policy. A short statement describing what can, and what can’t, be done
with the prototype GENI facility should be created. The PlanetLab AUP or other testbed
guidelines might serve as examples. Of immediate concern will be experiments or slices
that involve malware (e.g. wild viruses, worms, botnets, etc. captured from the Internet),
or services that might be used to store and retrieve user-provided content, or that might
cause traffic to be directed from the prototype GENI facility to an arbitrary 3rd party IP
address.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

29 of 32

7. Research User Management. The approach to assigning identities and credentials to
new users, as well as granting access to GENI resources to those users should be defined.
While nothing heavy-weight needs to be put in place, it would be a good idea to be able
to prepare a list of users, their GENI site identities and authorizations/privileges/access
rights, and to maintain this information at the prototype GENI site.

8. Testbed Monitoring. A plan should be in place for monitoring the use of the GENI
facility. While no particular requirements have been developed, it would be expected to
be able to log slice operations, such as creation, deletion, periods when active, etc. A
discussion should take place with the local campus NOC so that they are aware of the
GENI facility, and are prepared for the possibility of increases or spikes in traffic that
might occur once experimental slices begin using the GENI facility. This is especially
important if using shared bandwidth or networks across a campus to support GENI
researchers and operations.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

30 of 32

9. Attribute Based Access Control

The GENI ecosystem will be a highly decentralized collaborative environment that will
contain a diverse set of hardware resources such as wireless nodes and sensors,
reconfigurable routers, and optical hardware, and also provide programmability across
every layer of the network stack. Enforcing security properties in such an environment is
difficult, particularly since the requesters and resources will typically be managed by
different authorities and may have different authorization mechanisms. This is made even
more likely as GENI control frameworks interoperate through various forms of
federation. For example, one federation may have a central registration authority for
facility users that allows only registered (research) users to run experiments on
component resources, while another federation may have a fully decentralized model
where any user can be authorized locally by the component manager to experiment with
resources. Furthermore, even when the authorization mechanism may be the same, the
GENI security mechanisms will need to be agile enough to support different
implementations because, for example, the authorization semantics for a highly
connected optical mesh will be different than the authorization semantics for a sparsely-
connected delay tolerant network.

Our goal is to define a GENI security architecture, and also to illustrate the design of
feasible GENI security mechanisms that are both safe and usable by the community of
experimental network and distributed systems researchers. We propose adopting ABAC
[WJ03a] (attribute-based access control) semantics and concepts to authorize access to
information and resources in GENI as a starting point. The flexible attribute-based access
control mechanism makes access control decisions based on authenticated attributes of
entities (i.e., organizations, users, or processes in the system), while simultaneously
decentralizing attribute authority. The ABAC approach would permit access to services
and information in accordance with security policies to include “limited distribution”
within a net-centric environment that promotes discovery and data sharing. Thus while
providing the protection and safeguards against malicious users ABAC facilitates
automated enforcement of access control policies that allows unanticipated or new users
timely access to data and services. Moreover, by focusing discussions on security
abstractions with both well-defined and well-explored formal semantics and pre-existing
implementations, we aim to avoid intellectual thrashing by providing a sufficiently
concrete technology candidate, while focusing attention on the boundary between what is
achievable today with minimal development and those aspects of the problem that require
research breakthroughs.

In order to provide a flexible, decentralized, and scalable access control for the dynamic
GENI network, the ABAC mechanism derives authorization decisions from chains of
digitally signed attribute credentials, which is now a standard and well-understood
approach. Credential issuers or managers assert their assertion or judgments about the
attributes of entities through these credentials. These entities will include both research
users and organizations. Since these credentials are digitally signed, they can serve to
introduce parties, including strangers, to one another off-line when network connectivity

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

31 of 32

is unavailable, a feature which may be highly useful in a federated network infrastructure,
as it may sometimes be required to operate without complete and reliable connectivity. A
key to ABAC’s scalability is that the issuers of credentials can be strangers whose
authority is determined based on their own attributes, as documented in further
credentials.
Since many of the GENI sites and organizations will have limited mutual trust between
each other, we believe the requestor and the ABAC access mediator will sometimes be
unable to agree upon a trusted third-party that might assist them in using any sensitive
credentials to establish the mutual trust. (ABAC abstractions admit the possibility that
some aspects of an entitity’s credentials may be sensitive.) Concern regarding the release
of personal or private information or attributes of individuals is one situation which leads
to a credential being deemed sensitive. Therefore, the ABAC approach calls for requestor
and access mediator to enter into a kind of bilateral credential exchange, which the
inventors refer to as a trust negotiation. The negotiation consists of a sequence of
credential exchanges that begin by disclosing non-sensitive credentials. As credentials
flow, more are unlocked, enabling them also to flow. In successful negotiations,
credentials eventually flow that satisfy the policy required to access the desired resource.
To control transmissions that could disclose whether or not the negotiator has a given
attribute, ABAC implements attribute acknowledgment policies (ACK policies) and a
trust-target graph protocol, that supports the ABAC credential language and distributed
credential storage as shown in Figure 1.
Acknowledgement policies for example can be of the form SAk (1 ≤ k ≤ K), where
RAm(1≤m≤M) and EAn(1≤n≤N) are the pre-defined attributes resources and the
environment attributes. ATTR(s), ATTR(r), and ATTR(e) are attribute assignment
relations for subject s, resource r, and environment e, where:

ATTR (r) ⊆ RA1 × RA2 ×…× RAM ;
ATTR (e) ⊆ EA1 × EA2 ×…× EAN ;
ATTR (s) ⊆ SA1 × SA2 ×…× SAK ;

Using ABAC would permit GENI to support strong authenticated identities and
authorization policies, while leaving enough flexibility to support organizations and
individuals that require some degree of pseudo-anonymity.

GENI Security Architecture GENI-SEC-ARCH-0.4.doc March 16, 2009

32 of 32

Figure 2: ABAC Trust Negotiation Overview

We also envision abstractions and a supporting mechanism for administration and
exchange of attributes across different federates, similar to Shibboleth. While the
Shibboleth project has deployed an implementation providing a single sign-on
mechanism for universities on Internet2, we are concerned that the large Shibboleth code
base is less amenable to rapid, spiral development in support of GENI prototypes. Using
the single sign-on and authorization mechanism, Shibboleth, provides a secure
framework to transmit attributes to remote authorities. For example when an analysis
application attempts to access sensor measurements at a remote domain, the application’s
own home security domain will send certain information about that application to the
remote domain in a trusted exchange. These attributes will then be used by the remote
domain to help determine whether to grant the user access to the sensor measurements.
Shibboleth mechanisms provide a clean separation of identity and authorization functions
and makes use of other attributes to mutually refer to the principal's identity, but are
perhaps tied to closely to the web browser/web server model. The GENI Security
Architecture should have the ability to interface with, or reuse elements of Shibboleth and
the SAML policy language (or other RBAC policy languages) as appropriate, without
locking the GENI Security Architecture into being solely dependent on any one
technology.

Cryptographic Certificate
Exchange

Negotiation
Agent A

Trust

Target
Graph Trust Negotiation

Negotiation
Agent B

Trust

Target
Graph

Attributes Attributes

Ladder

Transfer of TTG

Transfer of TTG

