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Overview
ExoGENI is based on an extended Infrastructure-as-a-Service (IaaS) cloud model with coordinated
provisioning across multiple sites and a high degree of control over intra- and inter-site networking
functions. Most researchers will use a standard cloud computing stack to instantiate and manage
virtual machines.

The sites federate by delegating certain functions for identity management, authorization, and
resource management to common coordinator services offered by the ExoGENI federation; ExoGENI
in turn delegates some of these functions to the GENI federation and to identity systems operated by
participating institutions (Shibboleth/inCommon).

This structure enables a network of private ExoGENI IaaS clouds to operate as a hybrid community
cloud. ExoGENI combines this multi-domain cloud structure with rich networking capabilities
through direct Layer 2 site connectivity to national circuit backbone fabrics, linkages to other
national and international networks, and OpenFlow-enabled dataplanes within each site.

It provides unified access to these services to enable users to construct virtual network topologies on
demand. The testbed software supports GENI APIs and extended APIs to enable users to create and
manage a virtual network as a slice of virtualized resources within the infrastructure.

Basic operations envisioned within ExoGENI include

*  Provisioning individual compute resources (virtualized and bare-metal) from rack
resources. Users will be able to supply boot images for virtualized instances; bare-metal
instances will be limited to a few vetted images.

o We plan to support Linux (bare-metal and virtual) and Windows (virtual, possibly
also bare-metal). Other operating systems will require further study.

* Creating, modifying and destroying slices consisting of compute resources belonging to one
or more racks, tied together with VLANs provisioned from rack switches and intermediate
circuit providers.

* Create slices with user-driven packet forwarding control via OpenFlow. OpenFlow slices will
be restricted to VLANs provisioned within and between the racks

o Using OpenFlow, in the longer term we plan to offer an on-ramp feature for allowing
external traffic (from campuses or other slices) to transit existing slices (slice-as-a-
service)

* Create slices that combine ExoGENI resources with other GENI resources (e.g. meso-scale
OpenFlow and WiMax testbeds; via our switch at StarLight facility we plan to create
experimental L2 topologies that involve international partners)

1. Hardware

Each ExoGENI site is a small cloud site capable of supporting about 100 virtual machines, based on a
standard cloud cluster stack (e.g., Linux, KVM, and Eucalyptus). The site network links multiple
interfaces for each cloud server and offers controlled IP connectivity through the host campus
network.

Each site has a rack with multiple worker nodes, which are used as server substrate for provisioning
experiments. A single management node in each site runs provisioning software and GENI services
(like various CF interfaces, OF FlowVisor etc). Approximately 6TB local iSCSI storage appliance is
provided at each site for image storage, measurement data storage and other experimental needs. All
components are connected to a management switch, which combines the function of a rack
backplane for iSCSI access and out-of-band management connectivity to RENCI for remote control
and management needs (via a campus Layer 3 connection).



An IBM G8264R 10G/40G OpenFlow-enabled Layer2 dataplane switch with VLAN capabilities
connects the nodes to the backbone (see below discussion of hybrid OpenFlow/VLAN operation).
This switch serves as a termination point for incoming Layer 2 or Layer 1 dataplane connections (for
supporting experiment traffic) that each campus presents to the racks.

Figure 1: ExoGENI Rack Overview
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Management/head node will be equipped with a dual-socket 4 core 2.66GHz Intel Westmere CPU,
12G RAM and 8 1Gbps ports. Worker nodes will be equipped with dual-socket 2.66GHz Intel
Westmere CPUs, each with 6 cores and 48GB of RAM. Each worker node will be equipped with two
1Gbps and two 10Gbps interfaces. Revision 1 of ExoGENI rack architecture assumes 10G interfaces
are used for the dataplane (1G interfaces are used for management connectivity).

Figure 2: ExoGENI rack connectivity detail Figure 3: Worker node connectivity detail
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Figure 2 shows intra-rack connectivity detail (shown is a half-rack for Rev 1 rack design based on
IBM xM3 servers; Rev 2 racks will be based on IBM xM4 servers and will have the option of a less
expensive 1G/10G dataplane OpenFlow switch). All elements of the rack connect to the management
switch. Worker nodes are dual-homed into the management switch in a port-bonded fashion for
improved throughput, they also dual-homed into the dataplane OpenFlow switch (these ports may be



used for different types of slices - VLAN vs. OpenFlow). For additional remote management access,
all nodes’ IPMI interfaces are also connected to the management switch (See Figure 3).

The iSCSI storage (see Figure 4) will be connected through multiple bonded interfaces to the
management switch to improve the throughput when transferring OS images or large datasets within
the rack.

Figure 4: iSCSI storage connectivity detail
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Local management can be accomplished using the KVM switch and an integrated console with
keyboard provided in each rack.

2. External connectivity

2.1. Management plane connectivity

The connectivity of individual racks to the commodity Internet is envisioned to be flexible to
accommodate possible restrictions on the availability of public IP addresses at individual sites. The
connections to the commodity Internet via the campus network is expected to serve management
access by staff as well as experimenters. The use of commodity network connections for
experimental traffic will have to be a subject of explicit discussions between experimenters,
operational staff and participating campuses (the preferred option is to use OpenFlow connectivity
into the campus network to serve such needs and have a formal procedure for doing so).

For remote management access, racks will be linked together into an IPSec-secured private network
via a mesh of Juniper SSG5 gateways. These will provide secured remote access into each device
within the rack. In addition, the head node will be connected to the campus network to provide a
more limited access and in some cases proxy for compute resources created within the racks (VMs
and bare-metal).

Several options, offering varying degrees of flexibility, are envisioned. They are outlined in the table
below:

Option  Number of Public Description
[Pv4 addresses
required from site

A 2 Only the SSG5 and the head node have public IP addresses. All GENI resources
are proxied/NATted by the head node onto a single IP address. This option
may prove limiting for user tools that expect GENI slivers to be fully publicly
addressable with the entire TCP/UDP port space exposed.

B /24 or more SSG5 and head node have a public IP, head node has a pool of public IP
addresses to use for proxying resources within the rack.

C /24 or more SSG5, head node and elements of the rack have public IP addresses. GENI
slivers (VMs and bare-metal instances) have public IP addresses. This option
has the greatest performance along with significant security implications by
allowing public visibility of rack elements.




Our current preference is for option (B) wherever possible. Figure 5 shows the detail of VPN
connectivity. We prefer to have two redundant management connections into each rack - one via SSH
through the head node and one via SSG5 (in case the head node fails).

Figure 5: VPN connectivity detail
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2.2. Data plane connectivity

ExoGENI sites will be interconnected by transit aggregates. Each transit aggregate offers a point-to-
point Ethernet service among specified point-of-presence locations on the edge of the provider’s
network. Transit aggregates may offer dynamic VLAN services or pools of static VLANs connecting
racks to other aggregates. ExoGENI will use dynamic circuit services offered by NLR (Sherpa),
Internet2 (OSCARS) and ESNet (OSCARS) and native ORCA multi-layered circuit service in BEN
(Breakable Experimental Network) built by the state of North Carolina and managed by RENCIL. BEN
has a direct connection to a 10Gbps NLR FrameNet with Sherpa service.

This capability is implemented through a combination of mechanisms. Sites will connect to the
backbones through either a dedicated fiber or a static pool of VLANSs that traverse campus networks

and RONs to connect rack dataplane switches to the backbone interfaces (see Figure 1). The static

VLANSs coming out of individual sites can be thought of as available degrees of connectivity that can

be dynamically connected to other sites using the national Layer 2 backbone. We will negotiate with
sites and NLR on the details of VLAN tag assignments to the different sites.

Since the static VLANs incident on individual ExoGENI sites have fixed tags, connecting them together
requires a stitching facility that can take one VLAN tag and remap it onto another. In its initial stages,
ExoGENI will rely on the already deployed ORCA capability to remap VLAN tags that exists at
StarLight facility and at RENCI. We are in discussions with NLR to integrate VLAN translation into
Sherpa feature-set as the permanent solution to this problem.

ORCA-BEN team has deployed a L2 switch to the StarLight facility in Chicago. This facility is a
meeting point for many national fabrics. The deployed switch facilitates connectivity between
members of GENI Cluster D. Some members of the cluster connect directly to NLR, while others could
only negotiate dedicated connectivity to StarLight. ORCA-controlled switch at StarLight fills this 'gap’
by dynamically establishing connectivity between different Cluster D members. The switch serves a
dual purpose of interconnecting multiple fabrics as well as performing VLAN tag remapping where
necessary.

Figure 6 shows an example of how VLAN translation at fixed points in the network topology
(StarLight and RENCI) can serve as an enabler for instantiating dynamic slice topologies for GENI and
ExoGENI. In this figure, the desired experiment topology is shown in the top plane, while the circuits
and their remapping is shown in the bottom plane. Using the RENCI switch at the StarLight facility,
ExoGENI will be able to connect its NLR-connected sites (representing the majority of ExoGENI) to
the NERSC/LBL site, which is connected to ESNet and the ANI 100Gbps DOE testbed. Similarly
through StarLight, GLORIAD and KOREN we will be able to connect at Layer 2 to the FIRST@PC
OpenFlow testbed located in Korea. We will also have the opportunity to connect to our partners
from Fraunhofer FOKUS and their



Figure 6: Instantiating dynamic Layer 2 experiment topologies
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3. Software

3.1. Resource Provisioning

The testbed offers multiple levels of provisioning interfaces for user access and resource
management, including standard cloud interfaces (EC2 and xCAT), OpenFlow, and layered GENI
control and monitoring functions. One goal is flexible, automated deployment of customized software
stacks on shared servers, with secure isolation and manageable quality of service. We expect the
majority of users to rely on virtualization as this offers higher degrees of freedom in the choice of the
0S, kernel and filesystem. But it will also have a bare-metal imaging capability based on xCAT
provisioning tool (open-source xCAT, developed and maintained by IBM) with a small number of
vetted images.

Figure 7: ExoGENI software stack
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Figure 7 shows the ExoGENI software stack. For compute element provisioning it will use XCat
(bare-metal instances) and OpenStack (virtualized instances). To support OpenFlow, an instance of



FlowVisor will be running on the head node such that both FOAM and ORCA can communicate with it
to create slices. ORCA will also directly communicate with the OpenFlow switch, once the hybrid
mode (a mode combining a traditional switch operation with OpenFlow) is implemented by the
vendor.

The interface to control planes like OSCARS and Sherpa will not be distributed, but rather will be run
from a single reliable server at RENCI (see Section 3.3).

3.2. Resource Monitoring

Nagios - an established, versatile open-source monitoring software suite will be used as a low-level
monitoring solution for operations staff (it can also be used to feed GENI Instrumentation and
Measurement). We have demonstrated an initial implementation that showed how a number of
Nagios instances (one from each rack) can be aggregated into a single view for operations staff, in
order for them to monitor the health of individual resources and instantiated slivers (VMs) in each
rack in an easy-to-understand fashion. This model permits RENCI staff (and potentially GPO staff and
GMOC) to view the health of each rack, while on-site staff can view the health of just their rack.

Nagios collects information on most common performance metrics (CPU, memory, disk utilization,
network traffic, temperature readings). The IBM x3650 M3 server family has extensive probes for
server health monitoring (including power consumption) which we will work to enable and expose
via Nagios and to GENI users.

While at the time of the writing the final decision has not been made, we are considering adding
smart PDUs to racks to ensure we capture the power consumption of those elements in the rack that
do not have internal mechanisms to do so. As this represents an additional cost per rack, this decision
awaits the initial trial period with the first rack deployments.

3.3. Software components

ExoGENI may be viewed as a group of independent resource providers within a larger GENI
federation. A resource provider is represented by an ORCA AM (not to be confused with GENI AM;
ORCA AMs currently do not expose GENI AM AP], as ORCA internal interfaces rely on tickets - a
feature currently in discussion for future GENI API). In order to achieve the functionality required for
creating complex slices with resources from multiple providers, a coordinating function is needed,
which in ORCA is fulfilled by a Broker actor. ORCA AMs delegate some portion of their resources to
one or more brokers. The users interact with ORCA via the SM actor, which exposes the GENI AM API
as well as ORCA’s native user-oriented XMLRPC interface. SMs receive tickets from brokers for the
needed resources that they redeem with ORCA AMs to instantiate those resources.

An ORCA AM is a generic ORCA server configured with local policies and plug-in handler scripts to
control the aggregate’s resources or invoke the underlying laaS interfaces to create and manipulate
slivers. The initial ExoGENI deployment includes four kinds of aggregates offering network services:

« Cloud sites. A cloud site AM exposes a slivering service to instantiate virtual machines (VMs) on its
hosts and virtual links (VLANSs) over its internal network. An ORCA cloud AM includes a handler
plugin to invoke an EC2-compatible IaaS cloud service such as Eucalyptus or OpenStack. The handler
also invokes an extension to the cloud interface with a command set to instantiate interfaces on VMs
when they are requested, stitch interfaces to adjacent virtual links, and configure interface properties
such as a layer-3 address and netmask. This extension is known as “NEuca”: we first implemented it
for Eucalyptus, but we have since also ported it to OpenStack. For bare metal provisioning we will
rely on XCAT - xCAT plugin for ORCA is currently under development.

» Native ORCA-BEN circuit service. The AM for the Breakable Experimental Network (BEN) offers a
multi-layer circuit service. For ExoGEN], it provides Ethernet pipes: point-to-point VLANs between
pairs of named Ethernet interfaces in the BEN substrate. It uses a suite of ORCA plugins, including



NDL-OWL queries to plan the paths from a substrate model. The handler scripts for BEN manage
paths by forming and issuing commands to switch devices over the BEN management network.

 External circuit services. For these services, the AM invokes a provider’s native provisioning APIs to
request and manipulate circuits. The AM authenticates with its own identity as a customer of the
provider. A circuit is a pipe between named Ethernet interfaces on the provider’s network. We have
developed ORCA plugins for NLR’s Sherpa FrameNet service, Internet2 ION, and the OSCARS circuit
reservation service used in ESNet.

« Static tunnel providers. A provider can pre-instantiate a static pool of tunnels through its network,
and expose them as VLANSs at its network edge. The AM runs a simple plugin that manages an
exclusive assignment of VLANSs to slices, given a concrete pool of legal VLAN tags that name the
prearranged static tunnels. This technique has proven to be useful for tunneling through campus
networks and regional networks that do not offer dynamic circuit service.

Each virtual link instantiated from these aggregates appears as an atomic link (an Ethernet pipe or
segment) in the slice’s virtual topology. At the layer below, the aggregate may perform internal
stitching operations to construct a requested virtual pipe or segment from multiple stitched links
traversing multiple substrate components within the aggregate’s domain. A virtual link may even
traverse multiple providers if the host aggregate represents a multi-domain circuit service such as
OSCARS.

Figure 8 demonstrates the proposed ExoGENI ORCA software deployment. Each rack will have its
own ORCA AM that delegates resources to the local broker (for coordinating intra-rack resource
allocations of compute resources and VLANs) and to the global broker (ExoBroker), which
coordinates allocation for slices spanning more than one rack. Each rack will also run an ORCA SM
that will expose GENI AM API to allow the allocation of resources from the rack. An ORCA AM
running on the rack can stitch resources within one rack, however any stitching of resources external
to the rack has to be done by GENI tools externally.

ORCA has demonstrated a powerful slice embedding and stitching engine that can take under-
specified (unbound or partially bound topologies) and create global slices across multiple network
providers. In order to use this engine, an additional global SM (more can be deployed later) will be
deployed. This ExoSM will use the global ExoBroker to acquire resources from multiple racks as well
as intermediate network providers in a coordinated fashion (including pre-negotiated VLAN tag
assignment) and stitch them together into a single slice.

A global broker will also receive delegations of resources from ORCA AMs controlling the
intermediate network providers like Internet 2, NLR, ANI, LEARN and BEN. These resources will be
used by ORCA stitching engine via ExoSM to create global slices. The ExoBroker and ORCA AM actors
responsible for the network providers will run in VMs on RENCI-owned VMware cluster with hourly
backup and high-degree of hardware redundancy.

Each rack will include several additional components external to ORCA but integrated into its
operations:

* ImageProxy - is a component that helps distribute user-created filesystem/kernel /ramdisk
images to different sites. Today’s cloud software (Eucalyptus, OpenStack, xCAT) is built on a
single site model in which each site has a separate image repository from which compute
instances are booted. When multiple sites are involved, a user must somehow specify which
image is to be used and the image must be registered with the selected sites. ImageProxy
fulfills this function by allowing the user to specify a URL of the image descriptor meta-file
and its hash (for security purposes). When ORCA processes a slice request and decides on a
slice binding to particular sites, the ImageProxies at those sites download and register the
user image based on a URL of the metafile so the user’s image can be booted on compute



slivers within the slice. More on ImageProxy can be found here:
https://code.renci.org/gf/project/networkedclouds/wiki/?pagename=ImageProx

Figure 8: ORCA software deployment in ExoGENI
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¢ Shorewall DNAT Proxy - is a component that helps sites with limited public [P address
availability to proxy services on TCP/UDP ports running on compute slivers using a single IP
address. Its operation is fully integrated with ORCA and is configurable by the site operator.
More information can be found here: https://geni-orca.renci.org/trac/wiki/shorewall-with-
orca

* FlowVisor - the software provided by Stanford for creating OpenFlow slices. ORCA will
communicate with FlowVisor directly via its XMLRPC interface.

ExoGENI will also run several global components:

*  ORCA Actor Registry (running on https://geni.renci.org:12443 /registry/actors.jsp) - a
secure service that allows distributed ExoGENI ORCA actors to recognize each other and
create security associations in order for them to communicate. All active actors are listed in
the web view and an actor requires ExoGENI operations staff approval in order to start
communicating with other actors.

* RSpec/NDL conversion service (running on http://geni.renci.org:12080/ndl-
conversion/convert.jsp and http://geni.renci.org:12080/ndl-conversion/r-convert.jsp) used
by all ORCA SMs to convert RSpec requests to NDL and NDL manifests into RSpec.

These components are running on a VM in a production VMWare cluster at RENCI, that is
snapshotted hourly (for backup) and has high degree of hardware redundancy.



4. GENI Integration

4.1. APIs and RSpecs

Since internal ORCA inter-actor APIs (APIs used to communicate between ORCA AMs, brokers and
SMs) are ticket-based and operate using signed SOAP messages and not XMLRPC, it is ORCA SMs that
create the GENI AM API compatibility layer by implementing GENI AM API XMLRPC interface for the
users, while speaking ORCA APIs on the back end. They also perform the necessary RSpec-to-NDL
conversions between GENI RSpec and ORCA’s internal semantic NDL-OWL resource representations.
The conversion is hosted as a standalone stateless XMLRPC service described in Section 3.3.

This approach allows ExoGENI to evolve its architecture while maintaining compatibility with the
GENI standards.

ORCA’s GENI AM API implementation mostly conforms to GENI AM API v1, with the exception of
NDL-OWL ad conversions to RSpec and minor return parameter differences. We plan to have a GENI
AM API v2 compliant implementation, including the ad conversion, available by GEC13.

For interoperability with the traditional model of using OpenFlow in GENI, each rack will run and
instance of FOAM. Manual approval of FOAM slices will be performed by the GPO or their delegate.
Section 5.4 describes ExoGENI model for using OpenFlow without requiring manual opt-in approval.

4.2. Stitching

A critical challenge in distributed cloud orchestration is stitching of slivers that cross domain
boundaries. A key example is stitching links across multiple network aggregates. A cross-aggregate
network stitch involves a link that crosses a border between two adjacent providers. The border is a
link connecting a switch owned by one provider to a switch owned by the other. The network
stitching problem is also faced by inter-domain circuit services.

ORCA provides a general facility for cross-aggregate stitching that applies for network stitching and
other stitching use cases as well. This feature enables ORCA to orchestrate end-to-end stitching
across multiple aggregates. It can incorporate inter-domain circuit services offered by third parties,
as outlined above, but where “air gaps” exist between circuit services ORCA may bridge them by
cross-aggregate stitching at exchange points.

For example, ExoGENI has an exchange aggregate at the StarLight exchange facility. The AM controls
a single node (a switch), whose interfaces are connected to links to switches owned by other
transport networks with a presence at StarLight, including NLR, Internet2, and ESNet/ANI. The
switch is an Ethernet switch (a Cisco 6509) with a swapping capability, also called VLAN tag
remapping or VLAN translation. To join two pipes to form a circuit spanning StarLight, two adjacent
networks produce VLAN tags for the circuit on their adjacent links. The AM joins them by consuming
the selected VLAN tags and remapping them at each interface (port) to the same internal tag.

All sliver stitching in ORCA follows this producer/consumer model. Creating a stitch is a two-step
process. First, the controller allocates a sliver from the producer, which selects a tag or label for it,
perhaps guided by a broker or other coordinator. The label is chosen from some namespace
associated with the adaptation, such as the set of legal VLAN tags. Second, the controller passes the
label securely in a request to join the labeled sliver to another adjacent sliver (the consumer). The
controller queries the domain models of the aggregates hosting those slivers to infer which is the
producer and which is the consumer, based on their capabilities (e.g., swapping). In this way, the
controller constructs a directed dependency DAG, with directed edges from producers to consumers,
as it plans a slice’s virtual topology and the mapping to aggregates. It then traverses the DAG,
instantiating slivers and propagating labels to their successors as the labels become available.

The BEN circuit service also has a swapping capability. At present, some of the external circuit
services do not, but we hope and expect that they will add it in the near future. When two providers
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are adjacent at a link and neither has swapping capability, various standards and approaches exist to
negotiate common tags. We view tag negotiation as a legacy function: when necessary, ExoGENI can
bridge networks without swapping by configuring a broker to assign tags from a common
preallocated range.

ORCA produces RSpec manifests consistent with the prototype stitching schema, that should be
sufficient for external tool stitching. Inter-domain tag negotiation to the best of our knowledge is
currently not part of the GENI AM API and is not supported by the GENI AM API implementations in
ORCA SMs. ORCA’s internal stitching engine follows what is commonly referred to in GENI as a ‘tree’
model (actually a ‘forest’) with an entity external to ORCA AMs (an ORCA SM) determining acceptable
common tags and reserving them with one or more brokers, and utilizing tag translations in those
domains that permit this function.

4.3. Monitoring/GMOC interface

Monitoring within ExoGENI is layered, just like resource provisioning - at the bottom there is a
hardened industry-standard open-source solution (Nagios) that monitors the health of the
infrastructure and some of the sliver characteristics (like VMs coming and going and their state as
visible through the hypervisor). It should be possible to construct an interface from Nagios to
support GMOC’s internal interface.

To achieve better visibility and fidelity a feed from ORCA is needed notifying of slice
creation/teardown/modification events as well as any decisions the emebedding and stitching logic
has made in connection to those. In our conversations with GMOC we have proposed using a pubsub
interface based on XMPP XEP-0060 for that purpose as it would permit GMOC to collect and correlate
necessary data while at the same time opening the monitoring platform to other uses. At this point
we need to complete the pubsub implementation on our end.

Finally, for improved monitoring of virtualized compute instances, better tooling is required as the
ability of basic hypervisors to see inside the VM is limited, and forcing users to install specific
packages onto their images so their instances can be monitored is not a practical option as it is hard
to enforce and is intrusive and open to software versioning conflicts.

We have been in discussions with the University of Alaska at Fairbanks team (Brian Hay and his
students), regarding using the VIX (Virtual Machine Introspection
http://assert.uaf.edu/geni/vmi.html) tool in ExoGENI and have outlined the preferred way to
proceed, which was to integrate VIX with libvirtd - an open-source package sitting atop hypervisors
like Xen and KVM, which serves as a basis of many cloud software stacks, including Eucalyptus and
OpenStack. We would then work to integrate VIX monitoring information into Nagios and ORCA, as
needed, to expose the additional monitoring information to GMOC and GENI users.

4.4. Reachability/Continuity testing

ExoGENI will be a distributed facility that relies primarily on dynamic circuits for intra-slice
connectivity. With many disparate provisioning mechanisms in play it will be essential to perform
periodic reachability/continuity tests for both the management and the data planes. Nagios will
provide probes for basic reachability testing over the management plane that will inform operators
of any commodity L3 connectivity problems. The testing for L2 dataplane connections is more
involved and will require slices to be periodically created within and between racks to verify the
operations of the rack elements and intermediate network providers.

This is the evolving part of ExoGENI operations. It would be reasonably straightforward to create

some scripts that submit periodic slice requests and do a very basic verification of slice functionality.
If more sophisticated tools are available, we're open to adopting them into ExoGENI operations.
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4.5. User authorization

ExoGENI delegates user authorization to GENI (GPO) and its current authorization policy as
implemented in ORCA SM matches that implemented in ProtoGENI (the code was written by Prateek
Jaipuria - a Duke student who interned at the GPO over the summer of 2011). The current model
presumes that users will use inCommon to get their GENI credentials that can be verified.

We believe the future of GENI lies in adopting ABAC (and its libabac implementation), however this
decision has not been made yet. ORCA already demonstrated modifications necessary in its SM code
to use libabac and Duke students have been developing a convenient certificate storage facility,
which can keep user credentials and permit libabac to perform its inferences in order to determine
the validity of attribute assertions. These components can be added to ExoGENI if ABAC becomes
part of GENI operations.

At present the security procedures associated with storing user private keys and certificates are not
discussed since under the current GENI authorization it is not necessary in ExoGENI and is the
responsibility of GENI central.

5. How users will use ExoGENI

5.1. Getting compute resources

ExoGENI will offer two basic classes of compute slivers: VMs and bare-metal servers. VMs will come
in a number of subclasses, differing by the number of CPU cores, amount of RAM and disk available to
them (VM classification will be based on the EC2 instance type hierarchy adapted to the ExoGENI
hardware and OpenStack). The basic hierarchy has been agreed on as part of the compute ontology
definition done over the summer of 2011. The class.subclass will be specified as part of sliver._type
element of node RSpec.

Since ExoGENI permits users to use the images of their own creation in slices (rather than using only
a set of pre-approved images pulled from a common repository), the images must be specified
differently: they must be specified by a URL of an ImageProxy metafile and its hash (used to detect
malicious modifications to a metafile). The current RSpec convention used by ORCA is to use
disk_image element of RSpec and to place the URL in the name attribute, while the hash goes into the
version attribute. (More information on RSpec/NDL-OWL conversion conventions can be found here:

https://geni-orca.renci.org/trac/wiki/orca-and-rspec).

When getting a bare metal instance ExoGENI will likely use ‘raw-pc’ type name (we can also adopt
‘x3650.m3’ and x3650.m4") and conform to existing RSpec conventions used in protogeni for
specifying the name/version of a pre-approved image for bare-metal slivering that must exist in each
rack. These images will be periodically synchronized out-of-band between the racks and a small
central repository.

Users will be able to submit their slice requests using GENI tools (and GENI AM APIs) to specific SMs
or they will be able to use Flukes - ORCA’s GUI that operates on native interface and semantic web
resource representations. Both types of requests are processed in the same pipeline within the SM
such that similar authorization policies will be respected and they will operate on the same
credential sets.

ORCA supports post-boot script mechanism, similar to the execute service specified in RSpec. When
using ORCA’s native interface, this script can be templated for use with nodegroups - large groups of
nodes sharing common characteristics that can be (but don’t have to be) split between provider sites.
This feature has no RSpec equivalent.

More information on ORCA native interface and Flukes is available here:
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https://geni-orca.renci.org/trac/wiki/flukes

5.2. Intra-rack slices

The SM within each rack can allocate resources only from this rack, however they will still be stitched
together (i.e. compute slivers will be connected to each other by VLANs in the user-specified topology
within the rack). The SM will then produce an RSpec manifest with stitching schema extensions that
can be used by external tools to operate on the slice or, potentially, stitch it to other slivers via e.g.
FOAM.

5.3. Inter-rack slices

Users will be able to request intra-rack slices by submitting their requests to the ExoSM. This SM has
visibility into a wider pool of available resources and will perform necessary binding of request to
available substrate (in case that the user topology is unbound or only partially bound). In case of an
explicitly bound topology ExoSM will simply attempt to fulfill the request as stated, performing the
necessary stitching on the way if resources are available.

This request can be submitted either through the GENI compatibility interface on ExoSM or via
Flukes and ORCA native interface.

The alternative to using ExoSM is to use GENI tools to do the stitching external to ORCA using the
manifest produced by the individual rack SMs.

5.4. OpenFlow slices

Due to low penetration of OpenFlow in core circuit network providers and lack of quality of service
support (i.e. performance isolation) in currently available implementations, ExoGENI differs from
current GENI practice with respect to the usage model for OpenFlow networks. In GENI, an OpenFlow
datapath is viewed as a separate aggregate that “allocates" the right to direct network traffic flows
matching some set of specified patterns, which are approved manually by an administrator.

In ExoGENI, OpenFlow is an integrated capability available from some ExoGENI network providers,
including the sites available on top of basic VLAN slicing mechanism, rather than a distinct aggregate.
ExoGENI slices may designate OpenFlow controllers to direct network traffic within the virtual
network topology that makes up the slice's dataplane. The ExoGENI aggregates authorize the
controller automatically based on their assignments of virtual network resources to the slice's virtual
topology. As an option, ExoGENI may also allow GENI users to program the OpenFlow datapaths as
separate aggregates (using FOAM), with manual approval by GENI administrators.

The user will specify the URL of their OF controller in the RSpec request (the specific extension to
RSpec to support it is under discussion). A slice will be created with typically a single broadcast
domain for an entire slice (with VLAN tag remapping as needed to connect slivers from multiple
ExoGENI domains). The user’s controller will be able to perform forwarding of packets using
OpenFlow rules in OF datapaths included in the slice by matching on header fields other than the
VLAN tag, which will be ‘locked in’ to this slice via FlowVisor running in the rack. ORCA will
communicate with FlowVisor via its XMLRPC interface to communicate slice information (ports and
vlan tags involved in the slice) and controller URL.

It is important to understand that all slices in ExoGENI are based on VLANs. Some slices have
OpenFlow enabled in them for explicit user control of packet forwarding within those vlans. This
behavior is optional and is specified in the request.

5.5. Slices with components from other GENI resources

There are two ways in which other GENI resources can be stitched to slices within ExoGENI: over
commodity Internet, which provides no isolation from other slices. Since ExoGENI slices have
management network access via the commodity Internet, this is the default behavior.
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The better alternative is to connect via a dataplane to a resource on some VLAN. In this case
ExoGENI/ORCA will need to know the provider, VLAN tag on which the resource is available and,
possibly, a port number and network element from which this VLAN can be accessed. Using this
information ExoGENI staff can create a new NDL-OWL domain descriptor to enable ORCA’s stitching
engine to perform pathfinding and stitching to this resource.

This has been recently demonstrated at SC11 where ORCA was used to stitch a dynamic slice of cloud
resources to the DOE Hopper super-computer located at NERSC. More information can be found
here:

https://ben.renci.org/index.php?option=com docman&task=doc download&gid=25&Itemid=63.

Same should be possible for meso-scale VLANSs as long as proper points of entry (provider, network
elements, ports) onto them are identified.

5.6. Slice Performance Isolation

ExoGENI relies on industry- standard mechanisms for resource provisioning (KVM-based virtual
machines, bare-metal instances, quality-of-service provisioned VLANs) which all have well-
documented performance isolation properties.

Several practical factors may serve to weaken those properties:

* Using pools of static best-effort VLANs for connecting a rack to a dynamic circuit provider. In
our experience, while pools of static VLANs provide a practical means of connecting a rack to
other racks (or intermediate service providers), the reality is that these VLANs are usually
best-effort, since campus and RON providers don’t want to permanently reserve bandwidth
allocated to each VLAN, since it may remain unused. Even if a group of VLANSs is given some
portion of link bandwidth, they may still compete with each other for bandwidth. This means
that portions of the intra-rack slices relying on such a pool of VLANs may loose performance
isolation and retain only namespace isolation, thus affecting the repeatability of
experiments. The solution is to opt as much as possible for a direct (dark-fiber) connection
between the rack’s dataplane switch and a dynamic circuit provider, which can then provide
VLANs with reserved bandwidth.

® The current implementation of the OpenFlow in the IBM G8264R switch is high-performance
and does flow matching and forwarding on the ASIC at 10Gbps speeds with thousands of
flows simultaneously, however it is limited in that it does not support a hybrid mode in
which some of the ports can operate in OpenFlow mode, while the rest of the ports operate
as regular switching ports (hybrid mode is not part of OF 1.0 spec). Hybrid mode will
become available as a firmware upgrade from IBM later in 2012. The OpenFlow
implementation currently does not provide any performance isolation between flows
(creating a virtual interface with a queue is an optional OF 1.0 spec feature and is not
supported). When hybrid mode becomes available, we will use the fact that each worker
node is dual-homed into the dataplane OpenFlow switch to connect one of the worker 10G
interfaces to a port with OpenFlow enabled and the other to the port with traditional VLAN
switching. This way if a user wants a slice without OpenFlow, we can provide strong
performance isolation by provisioning a traditional QoS-enabled VLANs with specified
bandwidth in the switch to the compute instances running within the node. If a user wants
an OpenFlow slice, we will provision it on the OpenFlow-enabled port. We will continue
working with the vendor on future implementations through the lifetime of ExoGENI to
improve isolation properties in OpenFlow slices as the OpenFlow spec evolves and new
implementations become available.
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6. Management access and security procedures

6.1. Operations staff authorization

All elements in each rack will be configured to use a redundant LDAP server hosted at RENCI to
authorize operations personnel to login to network elements. If needed, we can add RADIUS support
for network element authorization (management and dataplane switches), as it is more commonly
used with network equipment. This is the mode in which individual BEN sites operate today under
RENCI control. Operations staff will belong to one or more authorization groups depending on their
level of access (per rack or rack element type). Users will be added or removed to this LDAP database
only the RENCI operations personnel.

Each element will also have a default admin login entry that will be known to a small number of
operations staff for emergency logins.

6.2. RENCI operational access

For management access the operations staff will use the secure network built out of SSG5 gateways
in each rack and use Juniper VPN software. Another way for operations staff to login will be to the
head node using SSH. These two methods provide two redundant ways of accessing rack elements in
case the other method fails (head node failure [more likely] or the SSG5 gateway failure [less likely,
since it is a diskless device]).

From there the operations staff will be able to access all other rack elements to configure or check
their health status.

As described above, Nagios will be used as a basis for low-level monitoring of rack element health
and access to the Nagios portal reflecting the health of racks and their elements will be controlled
using the same LDAP servers described in the previous section.

6.3. Site operational access

As a starting point, site staff will have limited access into the rack via SSH into the head node with
some limited administrator privileges asserted via LDAP group membership. As the testbed evolves
we will work to increase the level of privilege for local administrators.

Local administrators will also have emergency access to rack elements via a built-in KVM
(Keyboard/Video/Mouse) console. This will require a physical access to the rack. This may be
required in case of hardware failures to work with vendor representatives to diagnose and replace
failed rack elements.
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