Topological Optical Opportunities

Ruth Ann Mullen, PhD Photon Futures, LLC

www.photonfutures.com

mullen@alumni.caltech.edu

AIM or Skype: photonrouter

Photonics Experience

Caltech APh, USC EE

HRL

University of Washington

Battelle

Consulting Clients

Optical Networking Experience

Nextlink (now XO Communications)

360networks

Consulting Clients

Outline

- Topology Drivers
- Mostly Meshes, with Rings, and Trees
 - Advantages

- Examples

Topology Drivers

- Power
- Cost
- Survivability
- Traffic patterns
- Applications

Power as Topology Driver

- Co-location of server farms and data centers with nuke or hydro plants constrains topology
- Current core electrical routers are energy hogs
- All-optical routers sometimes promise higher wall-plug efficiencies
 - Packets– Labels– Bursts– Flows
- Question: Will energy efficiency of emerging technologies promise energy-independence of network topology, or not?

Cost as Topology Driver

- Photonic integration (whether for switching or routing)
- Redundancy of routes and λ's
 - Protection: pre-computed and reserved in advance
 - Restoration: dynamically provisioned as needed
- "Pay as you Grow" business models

Survivability as a Topology Driver

Varying levels of protection (as needed)

- Protection by a reserved path
 - Dedicated
 - Shared
- Restoration along alternate path
 - Discovery time
 - Provisioning time
- Unprotected connections (e.g. enterprise customer wanting carrier diversity)

Traffic Patterns Drive Topology

- Traffic drivers
 - Population Events -Unpredictable
 - IndustryApplications
- Traffic management drivers
 - Large service providers
 - Intelligent edge routers groom bursty edge traffic onto creamy core for optical circuit switching
 - Small/emerging/enterprise networks
 - Core routers may have continuing value

Applications drive Topology

Example: Video distribution

- Cable business model is supported by asymmetric tree architectures
- File-sharing applications demand more symmetric, meshy architectures

Mesh Advantages (Core, Metro, and Access)

- Survivability (esp. in presence of 2 or more points of failure, for mesh nodes into which fiber feeds come in via more than four distinct paths)
 - Protection: pre-computed and dedicated alternate paths
 - Restoration: alternate path is not pre-planned
- Varying levels of protection, as needed
 - Dedicated protection
 - Shared protection
 - Unprotected connections (e.g. enterprise customer diversity demands)
- Dynamically and remotely reconfigurable (provisionable from applications layer)
- Organic growth "Pay as you grow"
- Multicast support
- Higher connectivity topologies facilitate space deflection in emerging Optical Packet Switched networks

Emerging Topology: It's a Mesh

into which trees will connect

Core Optical Fiber Meshes

Historical Case Study 360networks – oeo mesh in 2001

3 east-west rails
Up to 6-degree nodes

Current DARPA Vision CORONET 2006 calls for ooo mesh

3 east-west rails

Mostly up to 4-degree nodes

Disruptive Changes

- Disruptive changes currently underway
 - Power (router wall plug efficiencies untenable)
 - Cost reductions via integration of diverse subsystem functions
 - optoelectronic transceivers (oeo now)
 - optical and or electro-optical processing (ooo later)
 - optical switching (oeo now, ooo later)
 - RF/optical integration (next slide)

RF-Optical Integration

- Cost drivers for cable and FTTx
- Coding efficiencies for more bits/Hz over fiber
- Wireless
 - o Fixed pt-pt mm-wave wireless photonic integration
 - rf-microwave-mm-wave oscillators
 - mm-wave generators
 - o Mobile wireless edge
 - Radio-over-fiber to the antenna towers
 - Optically-phased arrays
 - Connecting wireless towers in a coherent fiber

It's a Mesh

into which trees will connect

- Core Mesh (including rings)
- Metro Rings and Meshes
- Access Meshes (including rings) and Trees
 - Access meshes supportable via "pay as you grow"
 - Fiber (where fiber is available)
 - Fixed pt.-to-pt. mm-wave wireless (where fiber is unavailable or impractical)
 - Interim Topologies
 - Trees (interim PON)
 - Meshing PONS will be tricky
 - Close-in PONS may be subsumed by growth of access meshes
 - Wireless edge will mesh PON edge back to Access, Metro, and Core (via packet routing)
 - Rings (interim RPR, SONET/SDH, etc.)
 - Wireless Mesh at the Edge: mesh backhauled into core, metro, and access networks

Backup Slides

GENI Planning Challenge

Traffic Forecast Uncertainties

TE – Traffic Engineering

"Put the traffic where the bandwidth is."

NE - Network Engineering

"Put the *bandwidth* where the *traffic* is."

NP - Network Planning

"Put the bandwidth where the traffic is forecasted to be."

Two Scenarios

- Electrical Routing:
 - Large service providers: Statistics of large numbers from large customer base facilitates efficient aggregation at edge
- Optical Routing (of packets, flows, labels, or bursts)
 - May provide new business opportunities: smaller service providers lacking large initial customer base required to achieve efficient traffic aggregation at network edge
 - May one day be more power-efficient

"Traffic will go where the bandwidth is."

As a society, where do we want bandwidth and traffic?

- Geography: Beltway? Rust belt? Corn belt?
- Cultural: Urban? Suburban? Rural? Wilderness?
- Business: Big? Small?
- Family: Homes?
- Education: Schools?
- Trade and Security: Ports? Here, and/or abroad?

A Global Core Optical Network

Saleh - DARPA / STO

Approved for Public Release, Distribution Unlimited

CORONET - 2

Case Study: Reconfigurable Core Fiber Optic Mesh (oeo, 2001)

