Instrumentation Thoughts

GENI Measurement Workshop

Nell Spring

University of Maryland



Ramblings of a GENI newbie

The Outline:

e My context

— It never occurs to me to assume control over
the entire network.

— But | feel entitled to instrument my own traffic.

® Three key problems to address in supporting
measurement*

e Uncooked idea for feedback

*Apologies to those way ahead of me.



My Context (measurement projects)
® Scriptroute

— Script the logic (smarts) of active
measurement, hide the systems stuff

— Permit remote execution on PL since 2002
® Reverse engineering

— Rocketfuel , Discarte synthesize network path
iInformation to get a more complete or more
accurate picture for simulation

e Diagnosis
— Tulip - find the links to blame

— Serenity - try to find the wireless errors,
iInstead find the wireless tracing errors.



Three Key Requirements

1. Support for dynamic summarization and filtering
2. Precise and prompt, standardized timestamping

3. Ability to compensate for virtualization



Summarization / Filtering

® Imagine assembling “complete” information:
— Timestamps for every packet at every step.
— Intractable to collect without reducing data.

e Difficult to predict what’s needed (to construct
generic measurement).

e That means distributing code to summarize and
filter

e (bpfis a good example; CoMo; Skitter's compact
trace representation)



Precise and Prompt, Standardized
Timestamps

e Currently quite difficult to explain where
timestamps come from, and they’re not very good.

— Often measure non-network activities

e Design timestamps on the forwarding path

— Use hardware, note the source!

— Don’t need synchronization (that’s software).

* NTP adjustments troublesome (see Darryl
Veitch’s talk... awesome.)

— Define time to be public (even from NTP
clients).



Compensates for virtualization

e Don’t need to see traffic that belongs to others,
but...

e Should be able to tell that other activities are
interfering, in the absence of complete isolation.

e Include opague “other traffic” in traces and
counters.

*Inspired by the “top” argument on PlanetLab before
good memory resource control.



ldea In development

e >80% of the time when my code breaks, | look at
a stack trace.

— unhandled ruby exceptions
— gdb after abort()/assert()/(*NULL)

e \What if network error reports were so descriptive
and uniform?

— could applications (windows, firefox) quickly
help users repair?

— could applications repair more errors on their
own?



Network Stack Trace

e Easy example:
— arp timed out from router 128.8.126.1
— Ip host unreachable from 128.8.126.1
— tcp connect failed

e More stuff to include:
— Include unplugged cable? power off?

— unresponsive but (802.11) associated?
— queue too long? effects on groups of packets?

e Can we expose errors at each layer to be
propagated and handled?



