
Instrumentation Thoughts

GENI Measurement Workshop

Neil Spring

University of Maryland



Ramblings of a GENI newbie
The Outline:

• My context

– It never occurs to me to assume control over
the entire network.

– But I feel entitled to instrument my own traffic.

• Three key problems to address in supporting
measurement*

• Uncooked idea for feedback

*Apologies to those way ahead of me.

2



My Context (measurement projects)
• Scriptroute

– Script the logic (smarts) of active
measurement, hide the systems stuff

– Permit remote execution on PL since 2002
• Reverse engineering

– Rocketfuel , Discarte synthesize network path
information to get a more complete or more
accurate picture for simulation

• Diagnosis
– Tulip - find the links to blame
– Serenity - try to find the wireless errors,

instead find the wireless tracing errors.

3



Three Key Requirements

1. Support for dynamic summarization and filtering

2. Precise and prompt, standardized timestamping

3. Ability to compensate for virtualization

4



Summarization / Filtering

• Imagine assembling “complete” information:

– Timestamps for every packet at every step.

– Intractable to collect without reducing data.

• Difficult to predict what’s needed (to construct
generic measurement).

• That means distributing code to summarize and
filter

• (bpf is a good example; CoMo; Skitter’s compact
trace representation)

5



Precise and Prompt, Standardized
Timestamps
• Currently quite difficult to explain where

timestamps come from, and they’re not very good.

– Often measure non-network activities

• Design timestamps on the forwarding path
– Use hardware, note the source!
– Don’t need synchronization (that’s software).
∗ NTP adjustments troublesome (see Darryl

Veitch’s talk... awesome.)
– Define time to be public (even from NTP

clients).

6



Compensates for virtualization

• Don’t need to see traffic that belongs to others,
but...

• Should be able to tell that other activities are
interfering, in the absence of complete isolation.

• Include opaque “other traffic” in traces and
counters.

*Inspired by the “top” argument on PlanetLab before
good memory resource control.

7



Idea in development

• >80% of the time when my code breaks, I look at
a stack trace.
– unhandled ruby exceptions

– gdb after abort()/assert()/(*NULL)

• What if network error reports were so descriptive
and uniform?
– could applications (windows, firefox) quickly

help users repair?

– could applications repair more errors on their
own?

8



Network Stack Trace
• Easy example:

– arp timed out from router 128.8.126.1

– ip host unreachable from 128.8.126.1

– tcp connect failed

• More stuff to include:
– include unplugged cable? power off?

– unresponsive but (802.11) associated?

– queue too long? effects on groups of packets?

• Can we expose errors at each layer to be
propagated and handled?

9


