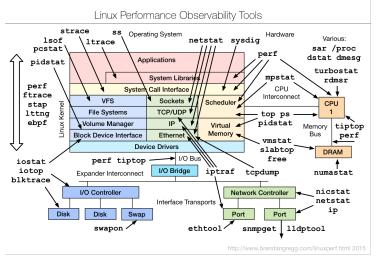
Kwapi: A Unified Monitoring Framework for Energy Consumption and Network Traffic

Florentin Clouet, Simon Delamare, Jean-Patrick Gelas, Laurent Lefèvre, Lucas Nussbaum, Clément Parisot, Laurent Pouilloux, François Rossigneux



Short version of a TRIDENTCOM'2015 talk Paper + slides: http://deb.li/kwapi

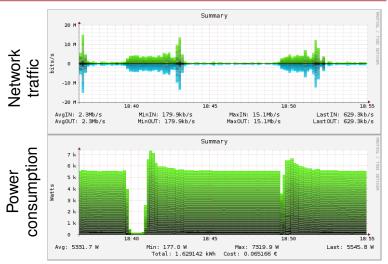
OTS monitoring and measurement tools

OTS monitoring and measurement tools

Many tools available, but:

- Need to be configured by the experimenters
- Often intrusive (running on users' nodes, non-negligible overhead)

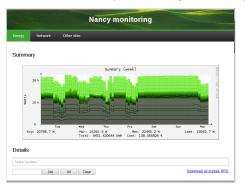
Monitoring solutions for system administration



- MRTG, Munin, Ganglia, Nagios, etc.
- Main focus: monitor long term variations, tendencies
- ▶ Designed for low resolution (5 mins) ~ unsuitable for experimenters

This talk: Kwapi

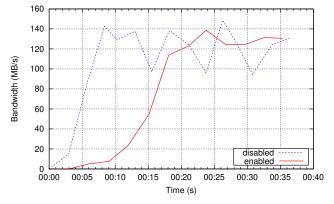
- Monitoring and measurement framework for the Grid'5000 testbed
- Initially designed as a power consumption measurement framework for OpenStack – then adapted to Grid'5000's needs and extended
- For energy consumption and network traffic
- Measurements taken at the infrastructure level (SNMP on network equipment, power distribution units, etc.)
- High frequency (aiming at 1 measurement per second)


Multi-metrics support: energy and networking

- ▶ 18:39:28 machines are turned off
- 18:40:28 machines are turned on again and generate network traffic as they boot via PXE
- ▶ 18:49:28 machines reservation is terminated, causing a reboot to the default system

Data access and storage

- Metrics collected by Kwapi are stored:
 - In RRD files (typical for monitoring systems)
 - In HDF5 files, for long-term loss-less archival
 - ★ One year of Grid'5000 monitoring = 720 GB
- Visualization via a web interface (selection by nodes or job numbers)

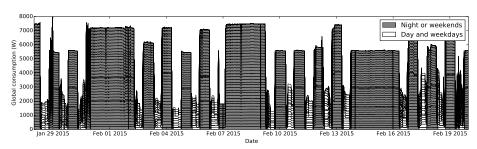


Data also exported via the Grid'5000 REST API

Some example use cases

Visualizing TCP congestion control

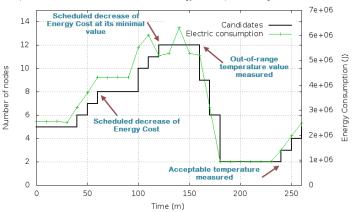
- Linux's implementation of TCP CUBIC includes the Hystart heuristic
 - Detects congestion by measuring RTT
 - Broken until Linux 2.6.32


- Not as accurate as nuttcp or iperf but:
 - Measurements are completely passive from the experiment POV
 - No instrumentation required on nodes

Extracting power consumption trends

- Grid'5000 distinguishes between two time periods:
 - daytime shared usage to prepare experiments
 - nights and week-ends large scale experiments
- As a result, there are often free resources during the day
- Also, nodes are automatically shut down when not used
- Does this reflect in power consumption as seen by Kwapi?

Extracting power consumption trends


- Grid'5000 distinguishes between two time periods:
 - daytime shared usage to prepare experiments
 - nights and week-ends large scale experiments
- As a result, there are often free resources during the day
- Also, nodes are automatically shut down when not used
- Does this reflect in power consumption as seen by Kwapi?

Evaluating energy-aware schedulers

- ▶ DIET: energy-aware distributed computing middleware
- Scheduler starts computing nodes based on energy cost
- Kwapi provides a feedback loop

Comparaison between candidate nodes and energy consumption through context events

Conclusions

- Kwapi: the integrated monitoring solution of the Grid'5000 testbed
- Already widely used on Grid'5000
- Available as free software
- Try it on your testbed, or on Grid'5000 (Open Access program)
- Future work (collaboration opportunities?)
 - Additional metrics: reactive power, network errors, Infiniband, storage systems, server room temperature, etc.
 - Integrate with other monitoring solutions (sFlow/NetFlow, collectd)
 - OML support: expose measurement points

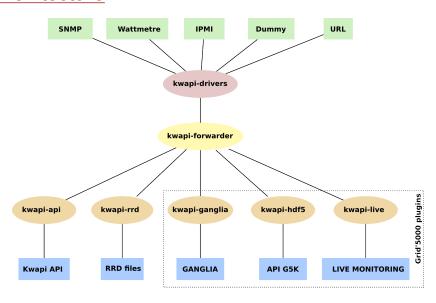
Backup slides

Context: Grid'5000

- Versatile testbed for research on HPC, Clouds, Big Data
- ► 10 sites (1 outside France)
- ▶ 24 clusters, 1000 nodes, 8000 cores
- ▶ 10-Gbps backbone (RENATER)
- Widely used since 2005:
 - ◆ 500+ users per year
 - ♦ 700+ publications since 2009

https://www.grid5000.fr/

Maximizing support for advanced experiments

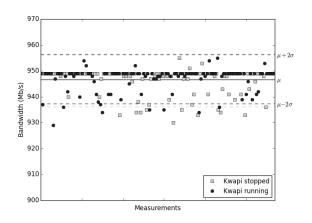

- Complete control of the testbed's resources, over the whole stack:
 - ◆ Bare-metal system image deployment
 → Customize your kernel, use your own Cloud stack
 - Network isolation using KaVLAN

 ∼ no perturbation; protect rest of the testbed
- Trustworthiness: automatic inventory and verification of resources (TRIDENTCOM'2014 paper)
- Fully programmable through a REST API
 Automating experiments → reproducible research
- ▶ **Higher level tools** to facilitate HPC, Clouds, Big Data experiments

This paper: observability, monitoring, measurement

Networking

Architecture



Development and deployment challenges

- ► SNMP:
 - GetBulkRequest to fetch all metrics at once
 - 64 bits counters (32 bits cycle in 4s on a 10 Gbps network)
- Configuration generated automatically from Grid'5000 Reference API
 - Describes each node's hardware, including where it is connected (network switch port, PDU port)
 - Format of SNMP's IF-Descr fields GigabitEthernet1/%LINECARD%/%PORT% TenGigabitEthernet%LINECARD%/%PORT% Unit: %LINECARD% Slot: 0 Port: %PORT% Gigabit - Level
 - Includes handling of complex cases (2+ NIC, 2 PSU, shared PDU)
- Configuration is automatically tested (Stress CPU and network → compare data retrieved from REST API)

Monitoring overhead

- Network traffic: all monitoring traffic on a separate network (also used for e.g. remote control of nodes)
- Load on network equipment: no visible impact on performance

