Independent Network Performance Measurement on Internet Misbehavior

Collin Anderson (@CDA)

Global Measurement at Scale

Open, Active Measurement at Scale

ndt-project / ndt

Watch
 ✓ 6

¥ Fork

4

1

🛨 Star

6

Network Diagnostic Tool

7 458 commits	₽ 12 branches	13 releases	8 contributors	<> Code	
				() Issues	32
Branch: master -	ndt / +		:=	11 Pull requests	1
Fixed select function usage	in c2s test				
skostuch authored on Jul	1	lat	test commit 129692dce1 🔂		
Admin	Merge AppletIssue120 branch into trun	¢.	2 years ago	-/~ Pulse	
Applet	Fixed issue with new client connecting	to old server	3 months ago	li Grapha	
HTML5-frontend	Merged newest master into MultiplePor	ts branch	3 months ago	in Graphs	
📔 l2util @ 205adc5	Re-add the I2util submodule that I appa	rently removed somehow	5 months ago	HTTPS clone URL	
in conf	Merged newest master into MultiplePor	ts branch	3 months ago	https://github.com	È
config	Check for OpenSSL when configuring		5 months ago	You can clone with HTTPS or Subversion. ③	, SSH,
contrib	Add an RPM to use Apache instead of	akewww	a year ago	Clone in Deskt	ор
doc	Merging in branch kkumar_code_organ	ize into trunk. This branch has c	xx 3 years ago	Download Zi	P
flash-client	Merged newest master into MultiplePor	ts branch	3 months ago	•	
ianalyze	Fix issue with missing break statement		2 years ago		
src	Fixed select function usage in c2s test		3 months ago		
tfw	Added info about actual traffic speed.		8 years ago		
	De-add the lOutil submodule that Lange	rantly ramovad comahow	5 months and		

Pervasive Measurement From The Edge

Pervasive Measurement From The Edge

Bandwidth Greece, Athens							
Results: Upload: 209.71 kbit/s (25.5 kB/s) Download: 1.20 Mbit/s (147.2 kB/s)							
(Alternate speed te	st at <u>dslreports</u>)						
Your Upload Speed	t: Test Result	t (209.71 kbit/s	5)				
µTorrent Bandwidth	Configuration						
Upload Limit:		17.0 kB/s	Upload Slots:	3			
Connections (per-	torrent):	55	Connections (global):	90			
Max active torrent	s:	1	Max active downloads:	1			
 Network Results: Port is open. Your network is properly configured. Current Port: (0:random) 36379 Automatic Port Mapping (Recommended) 							
Pervas	ive Meas From Tl	uremer he Edg	nt MEASUREMENT e	LAB			

Pervasive Measurement From The Edge

		Steps
		Step 1 2.85 Mbps
Your Connection		Share Your Results
3 Mbps 2 Mbps 1 Mbps 0 Mbps		You just contributed valuable open data that helps Open Internet advocates enforce strong Net Neutrality and ensures you get the speed and access you pay for. Tell your friends and please run the test often.
Consistency	Good	Shareable Link:
Fastest Test	2.79 Mbps	https://www.battleforthenet.com/internethealthtest/?t=eyJ0aW1IX3J1bil6
Slowest Test	1.49 Mbps	

est uses M-Lab code and infrastructure for performance measurements. Learn more about M-Lab and its data policies.

Pervasive Measurement From The Edge

Consumer Measurement and Policy Case Study

Interconnection Disputes in the United States

|--|

Multiple Transit Providers per City

M-Lab Site	Coun	State	City	Transit provic
ATL01	US	GA	Atlanta	Level3
ATL02	US	GA	Atlanta	Cogent
ATL03	US	GA	Atlanta	Tata
ATL04	US	GA	Atlanta	GTT
ATL05	US	GA	Atlanta	XO
DEN01	US	со	Denver	GTT
DEN02	US	со	Denver	Hurricane E.
DEN03	US	со	Denver	Level3
DEN04	US	со	Denver	Zayo
DFW01	US	ΤХ	Dallas	Cogent
DFW02	US	ΤХ	Dallas	Tata
DFW03	US	ΤХ	Dallas	Level3
DFW04	US	ΤХ	Dallas	XO
DFW05	US	ΤХ	Dallas	Zayo
IAD01	US	VA	Reston	XO
IAD02	US	VA	Ashburn	Cogent
IAD03	US	VA	Ashburn	Tata
IAD04	US	VA	Ashburn	GTT
IAD05	US	VA	Ashburn	Level3
LAX01	US	CA	Los Angeles	Cogent
LAX02	US	CA	Los Angeles	Tata

Transparency Problems

- Utilization and performance data is proprietary and hidden from the public.
- User collected information is often unreliable, incomparable, methodologically inconsistent and narrowly scoped.
- Longitudinal data is rare, so is comparative measurement.
- Independent data is expensive, collection efforts are burdensome.

Network Diagnostic Tool

- M-Lab's most popular hosted test, tens of thousands of measurements daily.
- Simple test of bulk transfer capacity.
- Multiple NDT implementations available, across different languages and for diversity of purposes.
- All implementations share the same methodology and are inter compatible.

Measuring Performance

Bulk Transfer Capacity

Inferring the Source of Congestion

Access ISP A

Access ISP B

Sufficient Sample

The United States Constitutes the Largest Source of this Data

Median download throughput across Internap in NYC over time from different ISPs (higher is better)

Inferring Sources of **Congestion in Practice**

Using New York's Comparison

Median download throughput across Cogent to Cablevision in NYC over time (higher is better)

Inferring Sources of Congestion in Practice

Using New York's Comparison

Median download throughput across Cogent in NYC over time from different ISPs (higher is better)

Inferring Sources of Congestion in Practice

US Access ISPs and Cogent (2013-2014)

Median download throughput across Cogent in LA over time from different ISPs (higher is better)

Inferring Sources of Congestion in Practice

US Access ISPs and Cogent (2013-2014)

Internet Performance Varies Significantly Throughout the Day and Across Interconnections

Median download throughput during the average day between access ISP and transit ISP (higher is better)

Diurnal Patterns Are Instructive

Expectations of Normal Performance

Median download throughput during the average day between access ISP and transit ISP (higher is better)

Diurnal Patterns Are Instructive

Expectations of Congested Performance

Median download throughput during the average day in January 2014 between Cogent and various ISPs in Los Angeles (higher is better)

Diurnal Cycles In Practice

Peak Hours, Peak Disruption

Median RTT during the average day in October 2013 between Level 3 and Comcast in Atlanta (lower is better)

Not Limited to Throughput

Latency Sensitive Applications Affected

Median download throughput during the average day in February 2014 between Level 3 and Verizon in Chicago (higher is better)

Not Limited to One Transit Provider

Level 3 and Verizon

Median download throughput across XO in Washington D.C. for Fall 2014

Congestion is Continuing

Congestion as of Q4 2014

or customers of at&t:

Fine Grain Resolution

Interconnection Observation

par01ParisFR48.8583912.34ord05Chicago_ILUS41.9786-87ord04Chicago_ILUS41.9786-87ord03Chicago_ILUS41.9786-87ord02Chicago_ILUS41.9786-87ord01Chicago_ILUS41.9786-87ord01Chicago_ILUS41.9786-87ord01Chicago_ILUS41.9786-87nuq1tSan Francisco Bay Area_CAUS37.3833-122nuq05San Francisco Bay Area_CAUS37.3833-122nuq05San Francisco Bay Area_CAUS37.3833-122
ord05Chicago_ILUS41.9786-87ord04Chicago_ILUS41.9786-87ord03Chicago_ILUS41.9786-87ord02ChicagoUS41.9786-87ord01Chicago_ILUS41.9786-87ord01San Francisco Bay Area_CAUS37.3833-12nuq05San Francisco Bay Area_CAUS37.3833-12
ord04Chicago_ILUS41.9786-87ord03Chicago_ILUS41.9786-87ord02ChicagoUS41.9786-87ord01Chicago_ILUS41.9786-87nuq1tSan Francisco Bay Area_CAUS37.3833-12nuq06San Francisco Bay Area_CAUS37.3833-12nuq05San Francisco Bay Area_CAUS37.3833-12
ord03Chicago_ILUS41.9786-87ord02ChicagoUS41.9786-87ord01Chicago_ILUS41.9786-87nuq1tSan Francisco Bay Area_CAUS37.3833-12nuq06San Francisco Bay Area_CAUS37.3833-12nuq05San Francisco Bay Area_CAUS37.3833-12
ord02ChicagoUS41.9786-87ord01Chicago_ILUS41.9786-87nuq1tSan Francisco Bay Area_CAUS37.3833-12nuq06San Francisco Bay Area_CAUS37.3833-12nuq05San Francisco Bay Area_CAUS37.3833-12
ord01Chicago_ILUS41.9786-87nuq1tSan Francisco Bay Area_CAUS37.3833-122nuq06San Francisco Bay Area_CAUS37.3833-122nuq05San Francisco Bay Area_CAUS37.3833-122
nuq1tSan Francisco Bay Area_CAUS37.3833-122nuq06San Francisco Bay Area_CAUS37.3833-122nuq05San Francisco Bay Area_CAUS37.3833-122
nuq06 San Francisco Bay Area_CA US 37.3833 -122 nuq05 San Francisco Bay Area_CA US 37.3833 -122
nuq05 San Francisco Bay Area_CA US 37.3833 -12
nuq04 San Francisco Bay Area_CA US 37.3833 -122
nuq03 San Francisco Bay Area_CA US 37.3833 -122
nuq02 San Francisco Bay Area_CA US 37.3833 -12
nuq01 San Francisco Bay Area_CA US 37.3833 -12
nbo01 Nairobi KE -1.319167 36.9
mnl01 Manila PH 14.5086 121
mil01 Milan IT 45.464 9.1
mia05 Miami_FL US 25.7833 -80
mia04 Miami_FL US 25.7833 -80
mia03 Miami_FL US 25.7833 -80
mia02 Miami US 25.7833 -80

U.S. Deployments

Transit Perspectives

|--|

Multiple Transit Providers per City

M-Lab Site	Coun	State	City	Transit provic
ATL01	US	GA	Atlanta	Level3
ATL02	US	GA	Atlanta	Cogent
ATL03	US	GA	Atlanta	Tata
ATL04	US	GA	Atlanta	GTT
ATL05	US	GA	Atlanta	XO
DEN01	US	со	Denver	GTT
DEN02	US	со	Denver	Hurricane E.
DEN03	US	со	Denver	Level3
DEN04	US	со	Denver	Zayo
DFW01	US	ΤХ	Dallas	Cogent
DFW02	US	ΤХ	Dallas	Tata
DFW03	US	ΤХ	Dallas	Level3
DFW04	US	ΤХ	Dallas	XO
DFW05	US	ΤХ	Dallas	Zayo
IAD01	US	VA	Reston	XO
IAD02	US	VA	Ashburn	Cogent
IAD03	US	VA	Ashburn	Tata
IAD04	US	VA	Ashburn	GTT
IAD05	US	VA	Ashburn	Level3
LAX01	US	CA	Los Angeles	Cogent
LAX02	US	CA	Los Angeles	Tata

The Regulator's Problem

- Utilization and performance data is proprietary and hidden from the public.
- User collected information is often unreliable, incomparable, methodologically inconsistent and narrowly scoped.
- Longitudinal data is rare, so is comparative measurement.
- Independent data is expensive, collection efforts are burdensome.

Network Diagnostic Tool

- M-Lab's most popular hosted test, tens of thousands of measurements daily.
- Simple test of bulk transfer capacity.
- Multiple NDT implementations available, across different languages and for diversity of purposes.
- All implementations share the same methodology and are inter compatible.

Measuring Performance

Bulk Transfer Capacity

Inferring the Source of Congestion

Access ISP A

Access ISP B

Sufficient Sample

The United States Constitutes the Largest Source of this Data

Median download throughput across Internap in NYC over time from different ISPs (higher is better)

Inferring Sources of **Congestion in Practice**

Using New York's Comparison

Median download throughput across Cogent to Cablevision in NYC over time (higher is better)

Inferring Sources of Congestion in Practice

Using New York's Comparison

Median download throughput across Cogent in NYC over time from different ISPs (higher is better)

Inferring Sources of Congestion in Practice

US Access ISPs and Cogent (2013-2014)

Median download throughput across Cogent in LA over time from different ISPs (higher is better)

Inferring Sources of Congestion in Practice

US Access ISPs and Cogent (2013-2014)

Internet Performance Varies Significantly Throughout the Day and Across Interconnections

Median download throughput during the average day between access ISP and transit ISP (higher is better)

Diurnal Patterns Are Instructive

Expectations of Normal Performance

Median download throughput during the average day between access ISP and transit ISP (higher is better)

Diurnal Patterns Are Instructive

Expectations of Congested Performance

Median download throughput during the average day in January 2014 between Cogent and various ISPs in Los Angeles (higher is better)

Diurnal Cycles In Practice

Peak Hours, Peak Disruption

Median RTT during the average day in October 2013 between Level 3 and Comcast in Atlanta (lower is better)

Not Limited to Throughput

Latency Sensitive Applications Affected

Median download throughput during the average day in February 2014 between Level 3 and Verizon in Chicago (higher is better)

Not Limited to One Transit Provider

Level 3 and Verizon

Median download throughput across XO in Washington D.C. for Fall 2014

Congestion is Continuing

Congestion as of Q4 2014

MLAB

Internet Policy and Independent Network Performance Measurement

> Collin Anderson collin@measurementlab.net