Software Defined Privacy-Preserving Measurement Instrument and Services

Yan Luo, UMass Lowell
Gabriel Ghinita, UMass Boston
Cody Bumgardner, Univ. of Kentucky
Michael McGarry, Univ. of Texas El Paso

Outline

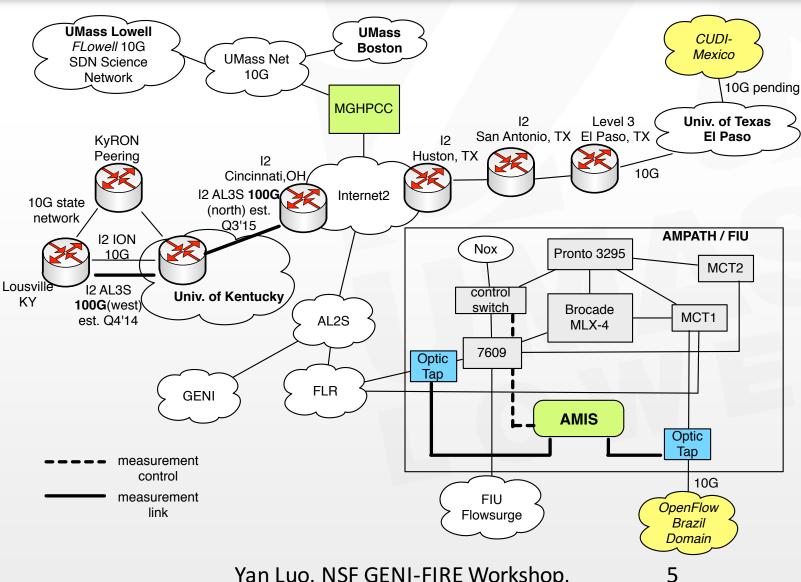
- Overview of IRNC AMIS Project
- Overview of Project Tasks
 - Software Defined Measurement
 - Privacy Preserving
 - Data Management and Processing
 - Traffic Modeling and Analytics
- Project Schedule and Milestones

NSF IRNC Program

- NSF International Research Network Connections
 - NSF investments on high performance network required by international science and engineering R&E
 - Supports backbones, exchange points, NOC, and network measurement
- Requirements on Advanced Network Measurement Infrastructure (AMI)
 - Flow granularity, 40+Gbps line rate, aggregate and summary reporting (protocol, AS-level s/d matrix), protect user privacy

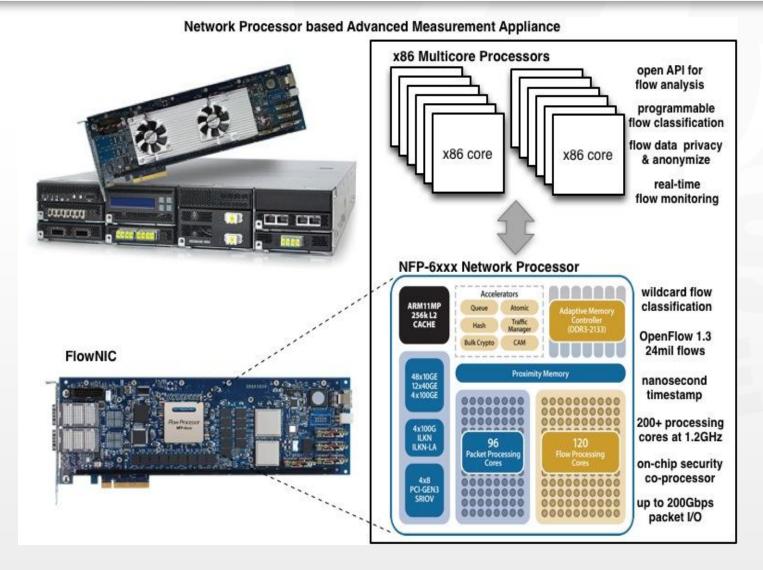
AMIS Project

Objectives


- 40+Gbps flow-granularity network measurement instrument
- Software defined measurement
- Preserving privacy of network flow info
- In-depth flow analytics

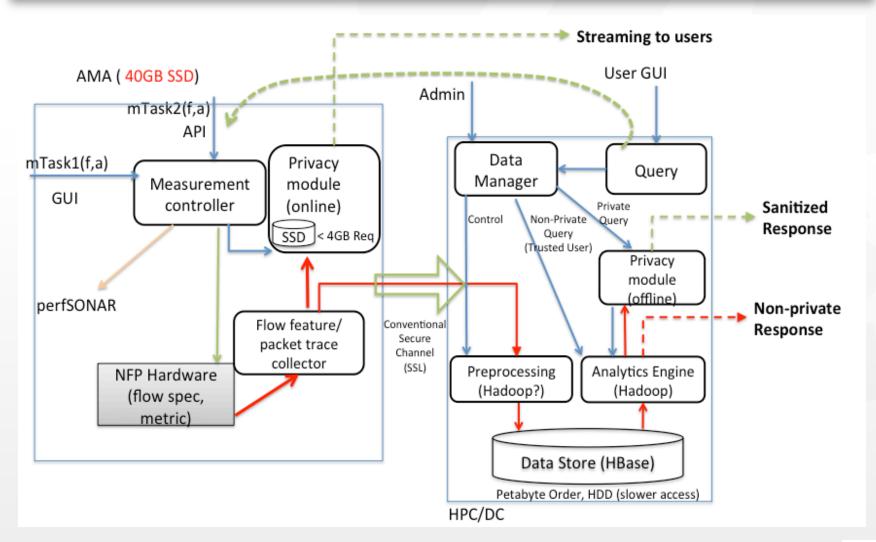
Project Team:

- Yan Luo, PI, University of Massachusetts Lowell
- Gabriel Ghinita, Co-PI, Univ. of Massachusetts Boston
- Cody Bumgardner, Co-PI, University of Kentucky
- Michael McGarry, Co-PI, University of Texas El Paso



AMIS At a Glance

The Sensor: Advanced Measurement Appliance


6

Advantages of AMA

- Superior in both performance and programmability
- Clean architectural separation between measurement data plane and measurement control plane
- Software based flow analysis on x86 multicores
- Line-rate measurement capabilities with no impact to user's traffic

AMIS Workflow

Software Defined Measurement

Why

- target changes (flows, subnets, ASes)
- measurement metrics changes
- Changes in measurement condition or period
 e.g. measure packet inter-arrival time when flow duration is longer than 5 minutes
- How
 - Measurement Data Plane
 - Measurement Control Plane

SDM Data Plane

- Challenges
 - Application and protocol diversity
 - Streaming
 - Line-rate
 - Distributed
- Possible solutions
 - Programmable parsing
 - Data stream computation
 - Hardware acceleration
 - Collaborative measurement

Privacy Preserving Measurement

- Privacy is a challenge in network measurement
 - What levels of details to report
 - Network operators have different policies
 - Sometimes bigger than technical challenges
- Comprehensive framework that encapsulates most prominent privacy models
 - Syntactic models (generalization/suppression)
 - Semantic models (differential privacy)
 - Cryptographic models (searchable encryption)
- Supports diverse set of data uses
 - E.g., operations, statistics, data mining

11

Supported Privacy Models

Searchable Encryption

Strong Suppose

Strong Mode Mode Mode No "O

Syntactic Privacy (k-

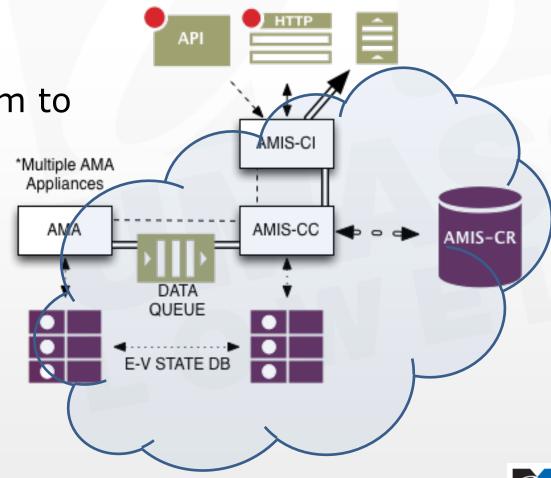
anonymity, I-diversity)

Strongest Protection
Slow Performance
Limited Query Capabilities
Offline Mode Only
Supports "Operational" Mode

Strong Protection Moderate Performance Moderate Query Capabilities No "Operational" Mode

Best-effort Protection
Fast Performance
Flexible Query Capabilities
Supports "Operational" Mode

Challenges in Measurement Data Analytics


- Diversity of analytics algorithms
 - Privacy preserving algorithms: differential privacy, searchable encryption, etc.
 - reports of network activities: traffic matrix, flowlevel, burst-level
 - Predictive: e.g. congestion event prediction
- Variations on Traffic Load
 - variations on compute loads
 - Variations of network I/O demands
 - Streaming requirements

Measurement Data Management and Processing in the Cloud

A centralized
 Operational Data
 Management System to
 manage distributed
 AMAs
 Multiple
 Applian

- configuration
- collection
- storage
- Processing
- Reporting

AMIS Project Schedule

- Year 1
 - Q1: design specification
 - Q2: agile development, coordination with AMPATH and CUDI about deployment and test plan, coordination with NetSage project
 - Q3: prototype development, integration and local testing
 - Q4: deployment of AMIS at AMPATH, reporting results, plan next steps
- Year 2
 - Expand to more test sites, gather feedbacks from operators, outreach
- Year 3
 - Outreach, continuous improvements, other tasks TBD
 Yan Luo, NSF GENI-FIRE Workshop,
 Sept 17-18, 2015

Thanks!

Q&A

