
Sponsored by the National Science Foundation

Establishing Policy-based Resource

Quotas at Software-defined Exchanges

Marshall Brinn, GPO

June 16, 2015

GEC23

Sponsored by the National Science Foundation 2

Outline

• Policies and SDX

• Policy-based Authorization in Aggregates

• Quota-based Policies

Sponsored by the National Science Foundation 3

Policies and SDX

• One of the key enablers of federation is trust

– At a human level, between the federates

– At a network level, in the ability of software to enforce

agreements between federates

• Quota-based policies are a critical element of

establishing such trust for cross-domain resource

exchanges

– Enabling each federation member to set and enforce its

own prioritization on resource allocation among

different federation peers

Sponsored by the National Science Foundation 4

Policies and SDX: Examples

• Consider an example federation between GENI

and iMinds. They might want to agree to (and

enforce) such statements as:

– GENI: “I want GENI users to be able to allocate up to

500 mbps at WIX, but iMinds users to only allocate 200

mbps at WIX”

– iMinds: “I want to limit the number of VMs that any

GENI slice can allocate on my resources during the

summer”

– GENI: “I want to limit the total number of VLANs

allocated at WIX at any one time over all iMinds users

to 10”

What are the kinds of things one would want to say in policy and

enforce at exchange points?

Sponsored by the National Science Foundation 5

Policy-based Authorization in Aggregates

Aggregate

Resource

Manager

Authorizer

Allocation

Policy

Delegate

The Delegate is the code

the performs the actual AM

API call. It is only called if

authorization checks are

passed. The Aggregate receives AM

API calls using XMLRPC

over SSL. It thus knows the

identity (SSL public cert) of

the caller, and the authority

to whom the caller belongs.

The Allocation Policy

specifies requirements of

what is required or forbidden

for the user’s call to be

authorized.

The Authorizer determines if the

current request is authorized by

evaluating the required and

forbidden policies in the context of

the current call and current and

requested allocation state.

The Resource Manager computes a

summary of current PLUS requested

resource allocations from Aggregate

internal state. The authorizer uses this

to compute policy adherence.

Sponsored by the National Science Foundation 6

ABAC-based Policy Format

{

 "identities" : {

 …

 },

 "constants" : {

 …

 },

 "binders" : [

 …

],

 "conditional_assertions" : [

 …

],

 "policies" : [

 …

],

 "queries" : [

 …

]

}

Constants: define a set of named constants for improving readability and

maintainability

Identities: Establish a set of named identities linked to specified certificates

Binders: A set of Python classes to bind variables based on current

allocation context (caller, time, authority, resources)

Conditional Assertions: Rules to determine whether to make ABAC

assertions/statements based on current context

Policies: ABAC statements of which assertions imply which other assertions

Queries: Set of statements that must be proven (if positive) or not proven (if

negative) for authorization

The policies are in a particular JSON format that combines Python logic and

ABAC (Attribute-based Access Control) assertions and identities to express

positive and negative requirements.

Sponsored by the National Science Foundation 7

Quota-based Policies

• The aggregate resource manager reports

allocation metrics of the proposed future state

(current + requested)

• Allocation metrics can be anything coordinated by

the aggregate and policy developers

– A common example is ‘NODE’ : # of NODES (VM’s,

PC’s) allocated

• These are then

– Aggregated by AUTHORITY, PROJECT, SLICE, USER

– Computed by HOURS, MAX, TOTAL

 Thus, e.g. we can write policies in terms of variables such as

AUTHORITY_NODE_TOTAL or PROJECT_NODE_HOURS

Sponsored by the National Science Foundation 8

Quota-based Policies [2]

• Most critical for SDX, we want to be able to

manage quotas on cross-domain network

allocations

• For this we define these allocation metrics,

gleaned from the stitching request RSpec:

– CAPACITY: Bandwidth requested for cross-domain

traffic

• Note: This is not necessarily the same as what BW is provided

in real-time

• Rather, it establishes an upper bound at allocation time.

– VLAN: The number of VLANs allocated for cross-

domain traffic

Sponsored by the National Science Foundation 9

Prototype Capability

• Xi Yang and Tom Lehman (MAX), Brecht

Vermeulen (iMinds) and I have developed a

working prototype SDX that enforces quota-based

policies in this manner.

– Integrated in the current WIX aggregate manager which

is the US side of GENI/iMinds exchange.

– Integrated in the current iMinds aggregate manager

which is the EU side of the GENI/iMinds exchange

• The policies are proof-of-concept (i.e. for

demonstration purposes) but the architecture and

implementation are real.

Sponsored by the National Science Foundation 10

Quota Enforcement:

Example output from omni

Allocation of slivers in slice urn:publicid:IDN+ch.geni.net:MAX-GENI+slice+max-gram-test1 at

maxgram3 failed: Error from Aggregate: code 2: Authorization Failure, Quota Exceeded.

Allocate slivers in slice urn:publicid:IDN+ch.geni.net:MAX-GENI+slice+max-gram-test1 failed at

http://max-myplc.dragon.maxgigapop.net:5001

http://max-myplc.dragon.maxgigapop.net:5001/
http://max-myplc.dragon.maxgigapop.net:5001/
http://max-myplc.dragon.maxgigapop.net:5001/
http://max-myplc.dragon.maxgigapop.net:5001/

Sponsored by the National Science Foundation 11

Quota Enforcement:

Example output from AM

Sponsored by the National Science Foundation 12

Summary

• Quota-based policies are a critical enabler of

cross-domain resource exchanges

• A prototype for such policies is currently

implemented and distributed with the current

geni-tools (gcf) software package

• Anyone interested in using this framework to

establish such policy-based authorization in their

aggregates, please contact help@geni.net or

mbrinn@bbn.com.

mailto:help@geni.net
mailto:mbrinn@bbn.com

Sponsored by the National Science Foundation 13

ABAC-BASED POLICY:

ANNOTATED EXAMPLE

Sponsored by the National Science Foundation 14

ABAC-based Policy Format: Annotated

{

 "identities" : {

 "GENI_CH_CA" :

 "/etc/gram/trusted_roots/ch.geni.net-ca.pem”

 },

{

 "identities" : {

 …

 },

 "constants" : {

 …

 },

 "binders" : [

 …

],

 "conditional_assertions" : [

 …

],

 "policies" : [

 …

],

 "queries" : [

 …

]

}

Identities: Establish a set of named identities linked to specified certificates

Sponsored by the National Science Foundation 15

ABAC-based Policy Format: Annotated

{

"constants" : {

 "$GENI_VLAN_QUOTA" : "5”,

 "$GENI_CAPACITY_QUOTA" : "500000”,

 "$GENI_AUTHORITY" :

 "urn:publicid:IDN+ch.geni.net+authority+ca”,

 "$IMINDS_VLAN_QUOTA" : "3”,

 "$IMINDS_CAPACITY_QUOTA" : "300000”,

 "$IMINDS_AUTHORITY" :

 "urn:publicid:IDN+wall2.ilab2.iminds.be+authority+ca”

 },

{

 "identities" : {

 …

 },

 "constants" : {

 …

 },

 "binders" : [

 …

],

 "conditional_assertions" : [

 …

],

 "policies" : [

 …

],

 "queries" : [

 …

]

}

Constants: define a set of named constants for improving readability and

maintainability

Sponsored by the National Science Foundation 16

ABAC-based Policy Format: Annotated

"binders" : [

 "gcf.geni.auth.binders.Standard_Binder”,

 "gcf.geni.auth.binders.SFA_Binder”,

 "gcf.geni.auth.binders.Stitching_Binder”,

 "gcf.geni.auth.resource_binder.MAX_Binder”,

 "gcf.geni.auth.resource_binder.TOTAL_Binder”,

 "gcf.geni.auth.resource_binder.HOURS_Binder”,

 "gcf.geni.auth.resource_binder.User_Slice_Binder”

],

{

 "identities" : {

 …

 },

 "constants" : {

 …

 },

 "binders" : [

 …

],

 "conditional_assertions" : [

 …

],

 "policies" : [

 …

],

 "queries" : [

 …

]

}

Binders: A set of Python classes to bind variables based on current

allocation context (caller, time, authority, resources)

Sponsored by the National Science Foundation 17

ABAC-based Policy Format: Annotated

"conditional_assertions" : [

 {

 "precondition" : "True”,

 "exclusive" : false,

 "clauses" : [

 {

 "condition" : "'$CALLER_AUTHORITY' == '$GENI_AUTHORITY' and

 $AUTHORITY_CAPACITY_TOTAL >= $GENI_CAPACITY_QUOTA”,

 "assertion" : "AM.EXCEEDS_QUOTA<-$CALLER”

 },

 {

 "condition" : "'$CALLER_AUTHORITY' == '$GENI_AUTHORITY' and

 $AUTHORITY_VLAN_TOTAL >= $GENI_VLAN_QUOTA”,

 "assertion" : "AM.EXCEEDS_QUOTA<-$CALLER”

 },

 {

 "condition" : "'$CALLER_AUTHORITY' == '$IMINDS_AUTHORITY' and

 $AUTHORITY_CAPACITY_TOTAL >= $IMINDS_CAPACITY_QUOTA”,

 "assertion" : "AM.EXCEEDS_QUOTA<-$CALLER”

 },

 {

 "condition" : "'$CALLER_AUTHORITY' == '$IMINDS_AUTHORITY' and

 $AUTHORITY_VLAN_TOTAL >= $IMINDS_VLAN_QUOTA”,

 "assertion" : "AM.EXCEEDS_QUOTA<-$CALLER”

 }

]

 }

],

{

 "identities" : {

 …

 },

 "constants" : {

 …

 },

 "binders" : [

 …

],

 "conditional_assertions" : [

 …

],

 "policies" : [

 …

],

 "queries" : [

 …

]

}

Conditional Assertions: Rules to determine whether to make ABAC

assertions/statements based on current context

Sponsored by the National Science Foundation 18

ABAC-based Policy Format: Annotated

"policies" : [

 "AM.MAY_SHUTDOWN<-GENI_CH_CA.MAY_SHUTDOWN”

],

{

 "identities" : {

 …

 },

 "constants" : {

 …

 },

 "binders" : [

 …

],

 "conditional_assertions" : [

 …

],

 "policies" : [

 …

],

 "queries" : [

 …

]

}

Policies: ABAC statements of which assertions imply which other assertions

Sponsored by the National Science Foundation 19

ABAC-based Policy Format: Annotated

"queries" : [

 {

 "statement" : "AM.EXCEEDS_QUOTA<-$CALLER”,

 "is_positive" : false,

 "message" : "Quota Exceeded”

 },

 {

 "statement" : "AM.MAY_SHUTDOWN<-$CALLER”,

 "is_positive" : true,

 "message" : "Privilege Failure”,

 "condition" : "'$METHOD' in

 ['Shutdown_V2', 'Shutdown_V3']”

 }

]

{

 "identities" : {

 …

 },

 "constants" : {

 …

 },

 "binders" : [

 …

],

 "conditional_assertions" : [

 …

],

 "policies" : [

 …

],

 "queries" : [

 …

]

}

Queries: Set of statements that must be proven (if positive) or not proven (if

negative) for authorization

