Building Clouds With

CleudlLab

Robert Riccl
May 2016

THEu
UNIVERSITY
OF UTAH

Clouds have been transformative

Clouds are great!

... except when they're not

Lots of opportunities for research

@ CloudLab

CloudLab enables research on the
future of cloud computing

and the new
they enable

@ CloudLab

The Problem with Cloud Research

) \m ﬂ' Ii ‘«77“
» T ' »
\ ‘
| -
\

11

&

s

@ CloudLab

The CloudLab Vision

+ A “meta-cloud” for building clouds
» Build your own cloud on our hardware resources

+ Agnostic to specific cloud software
 Run existing cloud software stacks (like OpenStack, Hadoop, etc.)
* ... or new ones built from the ground up

» Control and visibility all the way to the bare metal
» “Sliceable” for multiple, isolated experiments at once

With CloudLab, it's as easy to get an

entire cloud as it is to get a VM in a cloud

@ CloudLab

What Is CloudLabe

A place to
Slice A Slice B build your

Geo-Distfributed Stock own cloud

Storage Research OpendStack

Slice C Slice D

Virtualization and Allocation and Scheduling Research
Isolation Research for Cyber-Physical Systems

) 3 9 39 9

Sifels Wisconsin Clemson Federatea

Facillities
CC-NIE, Infernet2 AL2S, Regionals

@ CloudLab

Technology Foundations

* Built on Emulab and GENI (“ProtoGENI")
» In active development at Utah since 1999

- Several thousand users (incl. GENI users) emulab
- Provisions, then gets out of the way ". !
+ “Run-time” services are optional N
» Controllable through a web interface and ge ni
GENI APIs e e Futre
» Scientific instrument for repeatable research
- Physical isolation for most resources @
» Profiles capture everything needed for experiments
« Software, data, and hardware details pr Ot o g eni

» Can be shared and published (eg. in papers)

@ CloudLab

CloudLab’s Hardware

One facility, one account, three locations (+ morel)

* About 5,000 cores each (15,000 total) = TOR / Core switching design

» 8-16 cores per node * 10 Gb to nodes, SDN

* Baseline: 4GB RAM / core « 100 Gb to Internet2 AL2S

* Latest virtualization hardware * Partnerships with multiple vendors

Wisconsin —| Clemson — Utah

* Storage and net. * High-memory Power-efficient

* Per node: * 16 GB RAM / core ARM64 / x86
« 128 GB RAM * 16 cores /node Power monitors
« 2x1TB Disk * Bulk block store Flash on ARMs
« 400 GB SSD * Net. up to 40Gb Disk on x86

* Clos topology « High capacity Very dense

* Cisco and HP * Dell HP

@ CloudLab

Federated with GENI

» CloudLab can be used with a GENI account, and vice-versa
» GENI Racks: ~ 50 small clusters around the country

» Programmable wide-area network

« Opentlow at dozens of sites 0 o
_\ .I

+ Connected in one layer 2 domain
geni

Exploring Networks
of the Future

\

- Large clusters (100s of nodes) at several sites
» Wireless and mobile

- WiMax at 8 institutions

- LTE / EPC testbed (“PhantomNet”) at Utah
- International partners

» Europe (FIRE), Brazil, Japan

emulab

Many Sites, One Facllity

@ CloudLab

CloudLab Users So Far

MAINE™

May 2016:
{)!ue 300 projects e
WASHINGTON 1,250 users B
O 21,000 experiments Sravag

.WISCONSIN

MICHIGAN) 'oronto

REGON

@o:Ho

WYOMING hi
IOWA J

NEBRASKA ILLINOIS .
nited States O

QNEVADA Qx
UTAH Q
. WEST
San Fgapcisco HALLLNLE KANSO IS%.C) @ VIrRGINI
KeNTUCKY — @)GINIA
LIFORNIA

o]
Lasyeane OKLQ)MAO TEN%E dQﬁA
eles : ARK AS .
ARIZONA .5
% NEW MEXICO (@) . mississierl (@) SSOUTHE

San Dieg

o ALABAMA
N,,,-_,f-' TEXAS GEORGIA
P QW ¢
Hog?ton

©
“
(@)
o FLORIDA
2 k
/,\
S,
” .
)/Q;‘

Gulf of
Mexico

Mexico

CloudLab

Subways: A Case for Redundant, Inexpensive Data Center Edge Links

Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Krishnamurthy, Thomas Anderson
{vincent, danyangz, simpeter, arvind, tom}@cs.washington.edu
University of Washington

ABSTRACT

As network demand increases, data center network operators
face a number of challenges including the need to add capac-
ity to the network. Unfortunately, network upgrades can be
an expensive proposition, particularly at the edge of the net-
work where most of the network’s cost lies.

This paper presents a quantitative study of alternative ways
of wiring multiple server links into a data center network.
In it, we propose and evaluate Subways, a new approach
to wiring servers and Top-of-Rack (ToR) switches that pro-
vides an inexpensive incremental upgrade path as well as de-
creased network congestion, better load balancing, and im-
proved fault tolerance. Our simulation-based results show
that Subways significantly improves performance compared
to alternative ways of wiring the same number of links and
switches together. For example, we show that Subways of-
fers up to 3.1 x better performance on a MapReduce shuffle
workload compared to an equivalent capacity network.

CCS Concepts

*Networks — Data center networks;

Keywords

Data center network; Datacenter fabric

- TRIFEITR SY T2 TN Y s T

width of its data center networks by three orders of magni-
tude between 2004 to 2012, on average doubling every 10
months [32]. Making matters worse, the network is a large
and growing portion of the total cost of the data center [17].
Because many data center applications are highly sensitive
to tail latencies, networks must be configured with relatively
low average link utilization, further increasing costs.

Operators often prefer an incremental approach to adding
capacity while the existing network continues to carry traf-
fic [7, 32]. While it is also possible to take down the data cen-
ter and forklift in a new faster network, this process can re-
quire extensive downtime. Instead, adding multiple network
links per server has become one way to support upgrades. In
principle, a network operator could double capacity by dou-
bling the amount of network hardware, wiring each server in
parallel to dual Top-of-Rack (ToR) switches; those switches
in turn can be wired in parallel to a replicated aggregation
layer, and so forth.

In this paper, we present the counterintuitive result that
it is possible to achieve better than a proportional perfor-
mance improvement when upgrading a data center network
for typical workloads. In other words, a doubling of network
capacity can result in much better than a 2x performance
improvement on the same hardware. A key insight is that
nearby servers exhibit communication locality, where physi-
cally co-located servers often communicate at the same time,

. B . g 4 “ .y 1 Ay 1 M A

CloudLab

Paving the Way for NFV:
Simplifying Middlebox Modif cationsusing StateAlyzr
Junaid Khdid, Aaron Gember-Jacobson, Roney Michadl,

Anubhavnidhi Abhashkumar, Aditya Akella
Univerdty of Wisconsn-Madison

Abstract

Important Network Functions Virtudization (NFV)
scenarios such as ensuring middlebox fault tolerance or
dadicity require redistribution of interna middlebox
dae While many useful frameworks exist today for mi-
grding/cloning internal state, they require modif caions
to middlebox code to identify needed dde T is process
is tedious and manual, hindering the adoption of such
frameworks. We present a framework-independent sys-
tem, SaeAlyzr, that embodies nove dgorithmsadapted
from program analyds to provably and automatically
identify al state that must be migrated/cloned to ensure
conssent middiebox output in the face of redigribu-
tion. Wef nd tha SateAlyzr reducesman-hoursrequired
for code modif cation by nearly 20x. We apply Sae-
Alyzr to four open source middleboxes and f nd itsalgo-
rithmsto be highly precise. We f nd that a large amount
of, but not al, live state matters toward packet process-
ingin these middieboxes. SaeAlyzr'salgorithms can re-
ducetheamount of datetha needsredistribution by 600-
8000~ compared to naive schemes

1 Introduction

Network functions virtudization (NFV) promisesto of-
fer networks gredt f exibility in handling middlebox load
spikes and failures by helping spin up new virtud in-

o anees and dvnamicaly recidribidinatraf ¢ amona in-

central contribution of this paper isanove, framework-
independent system tha gredatly reduces the ef ort in-
wolved in making such modif caions

T ree factors make such modif cationsdif cult today:
(/) middiebox sof ware is extremely complex, and the
logicto updae/crededif erent piecesof daecan beintri-
cale; (i) theremay be 10s-100s of object typesthat corre-
spond to datethat needsexplicit handling; and (i77) mid-
dleboxes are extremely diverse. Factors i and /i make it
dif cult to reason about the completeness or correctness
of manual modif cations And, /i means manual tech-
niques tha apply to one middlebox may not extend to
another. Our own experience in modifying middleboxes
to work with OpenNF [6] underscores these problems
Makingeven asimple monitoringappliance (PRADS[6],
with 10K LOC) OpenNF-compliant took over 20 man-
hours We had to iterate over multiple code changes and
correpondingunit teststo ascertain completenessof our
modif cations, moreover, the process we used for modi-
fying this middlebox could not beeadly adapted to other
more complex ones

T ese dif culties sgnif cantly raise the bar for the
adoption of these otherwise immensely useful stae han-
dling frameworks. To reduce manud ef ort and ease
adoption, we develop SaeAlyzr, a system thd rdieson
dala and control-f ow analyssto automate identif cation
of date objects that need explicit handling. Using Sate-

CloudLab

High-Performance ACID via Modular Concurrency Control

Chao Xie!, Chunzhi Su', Cody Littley',
Lorenzo Alvisi', Manos Kapritsos? and Yang Wang?

I'The University of Texas at Austin 2Microsoft Research 3The Ohio State University

Abstract: This paper describes the design, implementation,
and evaluation of Callas, a distributed database system that
offers to unmodified, transactional ACID applications the op-
portunity to achieve a level of performance that can currently
only be reached by rewriting all or part of the application in a
BASE/NoSQL style. The key to combining performance and
ease of programming is to decouple the ACID abstraction—
which Callas offers identically for all transactions—from the
mechanism used to support it. MCC, the new Modular ap-
proach to Concurrency Control at the core of Callas, makes
it possible to partition transactions in groups with the guar-
antee that, as long as the concurrency control mechanism
within each group upholds a given isolation property, that
property will also hold among transactions in different groups.
Because of their limited and specialized scope, these group-
specific mechanisms can be customized for concurrency with
unprecedented aggressiveness. In our MySQL Cluster-based
prototype, Callas yields an 8.2x throughput gain for TPC-C
with no programming effort.

1 Introduction

This paper describes the design, implementation, and eval-

adopts the familiar abstraction offered by the ACID paradigm
and sets its sight on finding a more efficient way to implement
that abstraction.

The key observation that motivates the architecture of
Callas is simple. While ease of programming requests that
ACID properties hold uniformly across all transactions, when
it comes to the mechanisms used to enforce these properties,
uniformity can actually hinder performance: a concurrency
control mechanism that must work correctly for all possible
pairs of transactions will necessarily have to make conserva-
tive assumptions, passing up opportunities for optimization.

Callas then decouples the concerns of abstraction and
implementation: it offers ACID guarantees uniformly to all
transactions, but uses a novel technique, modular concur-
rency control (MCC), to customize the mechanism through
which these guarantees are provided.

MCC makes it possible to think modularly about the en-
forcement of any given isolation property /. It enables Callas
to partition transactions in separate groups, and it ensures
that as long as I holds within each group, it will also hold
among transactions in different groups. Separating concerns
frees Callas to use within each group concurrency control
mechanisms optimized for that group’s transactions. Thus,
Callas can find opportunities for increased concurrency where

@ CloudLab 16

Bullding on Each Others’

Work

@ CloudLab 17

@ CloudLab

@ CloudLab

Profiles: Packaged environments

CloudLab

What a Profile Contains

Name
fiat-lan-1

Link Type
Stitched Ethernet

Force non-trivial
Enabie Openflow
Shared VLan
(any)

Interfaces

Interface to controller
Name:

controller40
Bandwidth (in kbps):

IP:
10.11.101
Netmask:
255.255.0.0

=3

Interface to networkmanager

networkmanager:i0
Bandwidth (in kbps):

P:

10.11,10.2

CloudLab

Copy an Existing Profile

@ (] & cloudlab.us ¢ ™

Your experiment is ready! >

URN: urn:publicid:IDN+emulab.net+slice+rpruser-QvV992
State: ready
Profile: arm64-ubuntu14

Expires: 12-07T21:24Z (in 16 hours)

Terminate

Profile Instructions ?

Topology View List View Manifest node

CloudLab

Use a GUI

. NN cloudlab.us o | -

Topology Editor

Custom Type
Hardware Type

(any) Y

Custom Hardware

Disk Image (S
Ubuntu 12.04 LTS 64-bit . Sloud-controller o
Custom Disk Image name-node
Install Scripts m)
+ URL: worker-1

[T e —

CloudLab

Write Code

#!/usr/bin/env python

""" An example of constructing a profile with a single Xen VM. Instructions: Wait
for the profile instance to start, and then log in to the VM via the ssh port
specified below. (Note that in this case, you will need to access the VM through a
high port on the physical host, since we have not requested a public IP address
for the VM itself.)

Import the Portal object.
import geni.portal as portal

Import the ProtoGEN!I library.
iImport geni.rspec.pg as pg

Create the Portal context.

pc = portal.Context()

Create a Request object to start building the RSpec.
rspec = pg.Request()

Create a XenVM and add it to the RSpec.
node = pg.XenVM("node") rspec.addResource(node)

Print the RSpec to the enclosing page. pc.printRequestRSpec(rspec)

@ CloudLab

A More Complex Profile

Describe the parameter(s) this profile script can accept.
pc.defineParameter("n", "Number of VMs", portal.ParameterType.INTEGER, 1)

Retrieve the values the user specifies during instantiation.
params = pc.bindParameters()

Check parameter validity.
if params.n < 1 or params.n > 8:
pc.reportError(
portal.ParameterError(
"You must choose at least 1 and no more than 8 VMs."))

for iin range(params.n):
Create a XenVM and add it to the RSpec.
node = pg.XenVM("node" + str(i)) rspec.addResource(node)

@ CloudLab

Demo / Tutorial

http://cloudlab.us/tutorial

CloudLab

Sign Up At CloudLalb.us

Start Project

Personal Information
Lisername

Full Name

Email

Institutional Affiliation
Please Select Country

Please Select State

i cloudlab.us <

Sign Up

Project Information
Join Existing Project @ Start New Project
Project Name
Project Title (short sentence)
FProject Page URL

Project Description (details)

Login

@ CloudLab

The CloudLab Team

Chip Elliott (co-PI)
Larry Landweber

Mike Zink (co-PI)
David Irwin

THE
UNIVERSITY | G CLEMSON
B U OF UTAH@ @W!SCQN§IN | $UNTVERSITY
Iézlzeé: dIZICCI () Aditya Akella (co-PI) KC Wang (co-PI)
Steve Corbatd i{;mzi ﬁx.rpaci—Dusseau]%m Bott.um
Kobus Van der Merwe ron Liviy Jim Pepin
| BBN Technologies g AMHERST | |

Glenn Ricart (co-PI)

NI
CISCO.

@ CloudLab

Learn more, sign up, share your
research:

www.CloudLab.us

This material is based upon work supported by the National Science
Foundation under Grant No. 1419199. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.

