Programming The Network Data Plane In P4

Changhoon Kim chang@barefootnetworks.com

Status quo

Extremely limited way of turning "beautiful ideas" into reality

- No DIY must work with vendors at <u>feature</u> level
- Excruciatingly complicated and involved process to build consensus and pressure for *features*
- Painfully long and unpredictable lead time
- To use new features, you must get new switches
- What you finally get != what you asked for

Programmable network devices come to rescue

- CPUs: 10s of Gb/s
- FPGAs, NPUs: 100s of Gb/s
- Protocol-Independent Switch Architecture (PISA) chips: a few Tb/s
 - Initial architecture introduced in RMT [SIGCOMM'13]
 - Packet processing machine with fully programmable parser and generic match-action logic
 - No penalty in size, cost, and power compared to fixed-function ASICs
 - PISA products available now -- in next few years this kind of silicon will dominate

Packet forwarding speeds

Packet forwarding speeds

Domain-specific processors

Domain-specific processors

NO GOING BACK

July 2014

What does this mean?

You wear both hats ⓒ

To network device vendors

- S/W programming practices and tools used in every phase
- Extremely fast iteration and feature release
- Differentiation in capabilities and performance
- Can fix even data-plane bugs in the field

To large on-line service providers and carriers

- No more "black boxes" in the "white boxes"
- Your devs can program, test, and debug your network devices all the way down
- You keep your own ideas

The rest of the talk:

- How PISA works
- Why we call it protocol-independent forwarding
- What kind of cool things you can do with PISA and P4
- Demo!

PISA: An architecture for high-speed programmable packet forwarding

PISA: Protocol Independent Switch Architecture

PISA: Protocol Independent Switch Architecture

PISA: Protocol Independent Switch Architecture

Why we call it protocol-independent packet processing

Device does not understand any protocols until it gets programmed

Mapping logical data-plane design to physical resources

Re-program in the field

Switch Pipeline

What exactly does the compiler do?

What does a P4 program look like?

What does a P4 program look like?

What does a P4 program look like?

P4.org – P4 Language Consortium

P4.org – P4 Language Consortium

P4.org – P4 Language Consortium

P4.org Members

P4 development environment

Open-source P4 development tools

- P4 compilers & dev tools, reference P4 programs, P4programmable S/W switch, test framework, etc.
- Apache 2.0 license
- Available at <u>http://github.com/p4lang</u>

Several other programmable forwarding targets

- Both hardware and software devices (OVS, eBPF, VPP etc.)
- Switches, NICs, etc.

What kind of cool things can you do by programming data planes?

Advanced network monitoring, analysis, and diagnostics

- Custom traffic monitoring and filtering
 - FlowRadar [NSDI'16]
- Various modes of congestion control
 - RCP, XCP, TeXCP, DCQCN++, Timely++
- Dynamic source routing
 - Flowlet switching, CONGA [SIGCOMM'15], HULA [SOSR'16]
- Embedding middlebox functions into switches
 - In-switch L4 connection load balancing, TCP SYN authentication, etc.
- Offloading parts of the distributed apps
 - SwitchPaxos [SOSR'15, ACM CCR'16], SwitchKV [NSDI'16]
- Jointly optimizing network and the apps running on it
- And many more ... -- we're just starting to scratch the surface!

Very natural questions

"Is <u>every packet</u> delivered correctly and timely? If not, when and why? If yes, how well?"

No switches today can answer these **basic** questions.

3 "How long did my packet queue at each switch?"

3 "How long did my packet queue at each switch?"

The network should answer these questions

- "Which path did my packet take?"

- "Which rules did my packet follow?"
- 3
 - "How long did it queue at each switch?"

4 "Who did it share the queues with?"

With programmable data plane, we can now answer all these questions, at line rate, without any latency penalty!

Two approaches (each is a P4 program)

1. Packet postcards

- Switch generates a small time-stamped digest for every packet
- Sends to server(s) for logging and processing

Packet postcards

Two approaches (each is a P4 program)

1. Packet postcards

- Switch generates a small time-stamped digest for every packet
- Sends to server(s) for logging and processing
- **Pros**: Can replay network history. Packet sizes unchanged.
- Cons: Lots of extra traffic.

Two approaches (each is a P4 program)

1. Packet postcards

- Switch generates a small time-stamped digest for every packet
- Sends to server(s) for logging and processing
- Pros: Can replay network history. Packet sizes unchanged.

• Cons: Lots of extra traffic.

2. Inband Network telemetry (INT)

Data packets carry instructions to insert state into packet header

In-band Network Telemetry (INT)

Log, Replay, Analyze, Control

Two approaches (each is a P4 program)

1. Packet postcards

- Switch generates a small time-stamped digest for every packet
- Sends to server(s) for logging and processing
- Pros: Can replay network history. Packet sizes unchanged.

• Cons: Lots of extra traffic.

2. Inband Network telemetry (INT)

- Data packets carry instructions to insert state into packet header
- Pros: No additional packets. Can replay network history.
- Cons: Packet size increases.

In-band Network Telemetry in P4

```
table int_table {
  reads {
    ip.protocol;
  }
  actions {
    export_queue_latency;
  }
}
```

Add TCP Options & copy switch ID and queue latency Into the options

Demo!

Demo environment

What's going to happen ...

What's going to happen ...

INT open-source code and spec

<u>http://p4.org/p4/inband-network-telemetry/</u>

hrome File Edit View History Bookmarks People Window Help	4	5 4 ?	r 🛋 📑 63% 🖲	Wed Oct 28 5	:01 PM Chang Ki	m O
Rs Improving Network Monitor × Op4factory/targets/switch at ×						Ch
C D p4.org/p4/inband-network-telemetry/					e	2 2
E Work 🛧 Bookmarks					🚍 (Other B
	SPEC	CODE	NEWS	JOIN US	BLOG	

Improving Network Monitoring and Management with Programmable Data Planes	Search the Site Search		
By Mukesh Hira & LJ Wobker	Recent Posts		
Quicklinks : <u>The INT specification</u> – – – <u>INT GitHub repository</u> – – – <u>INT demo video</u> Compute virtualize on and the widespread demovement of virtual machines, such as extension of the network into the	Improving Network Monitoring and Management with Programmable Data Planes		
srvisor i soli i ble rap twork services – logical	P4 goes to England: SIGCOMM 2015		
VMware N Spec zatic Xer P4 COUE a be dec /sical network so as to	P4 language evolution		
enable deployment of virtual services over any physical network infrastructure, the only requirement from the physical	P4 and Open vSwitch		
network being IP connectivity between the hypervisors.	1st P4 Workshop on June 4, 2015		
While the decoupling of physical and virtual topologies has advantages, it is important to have some interaction between the physical and virtual switches to allow for end-to-end monitoring of the entire physical + virtual network from a "single pane of glass" and to help in troubleshooting and fault isolation in complex physical + virtual topologies.	Archives September 2015		
We propose methods for various network elements to collect and report their state in real-time, allowing for improved	July 2015		
cooperation between the virtual and physical layers without requiring intermediate layers such as CPU driven control	June 2015		
planes. The general term we have applied to these methods is INT: Inband Network Telemetry.	May 2015		
Some examples of useful network state to be reported by network elements are –			
(i) <switch-id, id="" id,="" input="" output="" port=""> – This allows for determination and monitoring of the different paths between a pair of end-points. Current mechanisms for determining multiple paths between a pair of end-points are based on IP</switch-id,>	Categories API		

Recapping: Why is data-plane programmability a big deal?

Key benefits of programmable forwarding

- 1. <u>New features</u>: Add new protocols
- 2. <u>Reduce complexity</u>: Remove unused protocols
- 3. Efficient use of resources: Flexible use of tables
- 4. <u>Greater visibility</u>: New diagnostics, telemetry, OAM etc.
- 5. <u>Modularity</u>: Compose forwarding behavior from libraries
- 6. <u>Portability</u>: Specify forwarding behavior once; compile to many devices
- 7. Own your own IP: No need to tell the chip vendor your features

Closing remark

Network is becoming a programmable platform, repeating the same evolution pattern that already took place in computing and storage industries

Join the 4th P4 Workshop and Developer Day, May/16 - 17 at Stanford (more info at http://p4.org)

Thanks!

Q&A

BACKUP SLIDES