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Status quo 

Switch OS 

Run-time API 
Driver “This is roughly how I process 

packets …”  

Fixed-function ASIC 

in English 

•  Prone to bugs 
•  Very long and unpredictable lead time 
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Extremely limited way of turning “beautiful ideas” 
into reality 
§  No DIY – must work with vendors at feature level 
§  Excruciatingly complicated and involved process to build 

consensus and pressure for features 
§  Painfully long and unpredictable lead time 
§  To use new features, you must get new switches 
§  What you finally get != what you asked for 

3 



Programmable network devices come to rescue 

§  CPUs: 10s of Gb/s 
§  FPGAs, NPUs: 100s of Gb/s 
§  Protocol-Independent Switch Architecture (PISA) chips: 

a few Tb/s 
§  Initial architecture introduced in RMT [SIGCOMM’13] 
§  Packet processing machine with fully programmable parser and generic 

match-action logic 
§  No penalty in size, cost, and power compared to fixed-function ASICs 
§  PISA products available now -- in next few years this kind of silicon will 

dominate 
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ABSTRACTP4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from di↵erent hardware and software vendors.

Version
Date

Header Fields

OF 1.0
Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1
Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2
Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3
Jun 2012 40 fields

OF 1.4
Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-

plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsula-

tion (e.g., NVGRE, VXLAN, and STT), for which they re-

sort to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields, allowing controller applications to

leverage these capabilities through a common, open inter-

face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-

tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

Figure 1: P4 is a language to configure switches.

Recent chip designs demonstrate that such flexibility can

be achieved in custom ASICs at terabit speeds [1, 2, 3]. Pro-

gramming this new generation of switch chips is far from

easy. Each chip has its own low-level interface, akin to

microcode programming. In this paper, we sketch the de-

sign of a higher-level language for Programming Protocol-

independent Packet Processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a
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Turning the tables “upside down” 

Switch OS 

Run-time API 
Driver 

PISA device 
(Protocol-Independent Switch Architecture) 

“This is precisely how you 
must process packets” 

in P4 
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What does this mean? 
§  To network device vendors 

§  S/W programming practices and tools used in every phase 
§  Extremely fast iteration and feature release 
§  Differentiation in capabilities and performance 
§  Can fix even data-plane bugs in the field 

§  To large on-line service providers and carriers 
§  No more “black boxes” in the “white boxes” 
§  Your devs can program, test, and debug your network devices all the way down 
§  You keep your own ideas 

11 

You wear 
both hats J 



The rest of the talk: 

12 

-  How	PISA	works	
-  Why	we	call	it	protocol-independent	forwarding	
-  What	kind	of	cool	things	you	can	do	with	PISA	and	P4	
-  Demo!	



PISA: An architecture for high-speed 
programmable packet forwarding 

13 
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Buffer 
M M 
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PISA: Protocol Independent Switch Architecture 
Match Logic 
(Mix of SRAM and TCAM for lookup tables, 
counters, meters, generic hash tables) 

Action Logic 
(ALUs for standard boolean and arithmetic operations, 
header modification operations, hashing operations, etc.) 

Recirculation 

Programmable		
Packet	Generator	

CPU (Control plane) 

A 

… 

A 

… 

Ingress match-action stages (pre-switching) Egress match-action stages (post-switching) 



Why we call it 
protocol-independent packet 

processing 

17 



Logical Data-plane View 
(your P4 program) 
Switch Pipeline 

Device does not understand any protocols until 
it gets programmed 
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Mapping logical data-plane design to 
physical resources 
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Re-program in the field 
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What exactly does the compiler do? 

Queues 

P
ro

gr
am

m
ab

le
 

P
ar

se
r 

CLK 

…
 

…
 

…
 

…
 

Match Table 
(SRAM or TCAM) 

Cross 
Bar 

Hash 
Gen 

PHV 
(Pkt Hdr Vector) 

Action & Instr 
Mem 

PHV’ 

key	

params	

action	
constant	

ALUs 
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What does a P4 program look like? 

L2 
IPv4 

ACL MyEncap 

IPv6 

header_type ethernet_t {
fields {

dstAddr : 48;
srcAddr : 48;
etherType : 16;

    }
}

parser parse_ethernet {
  extract(ethernet);
  return select(latest.etherType) {
    0x8100 : parse_vlan;
    0x800  : parse_ipv4;
    0x86DD : parse_ipv6;
  }
}

TCP 

IPv4 IPv6 

MyEncap Eth 

header_type my_encap_t {
fields {

foo : 12;
bar : 8;
baz : 4;
qux : 4; 
next_protocol : 4;

    }
}

22 



What does a P4 program look like? 

L2 
IPv4 

ACL MyEncap 

IPv6 
table ipv4_lpm 
{    

reads {
        ipv4.dstAddr : lpm;
  }

actions {
        set_next_hop; drop;    

}
}

action set_next_hop(nhop_ipv4_addr, port) 
{    

modify_field(metadata.nhop_ipv4_addr, nhop_ipv4_addr);    
modify_field(standard_metadata.egress_port, port);    
add_to_field(ipv4.ttl, -1);

}

control ingress 
{

apply(l2);
apply(my_encap);
if (valid(ipv4) {

apply(ipv4_lpm);
} else {

apply(ipv6_lpm);
}
apply(acl);

}
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/* Example: A typical IPv4 routing table */ 
table ipv4_lpm { 
    reads { 
        ingress_metadata.vrf    : exact; 
        ipv4.dstAddr            : lpm; 
    } 
    actions { 
        nop; 

        l3_l2_switch; 
        l3_multicast; 
        l3_nexthop; 
        l3_ecmp; 
        l3_drop; 
    } 
    size : 65536; 
} 

What does a P4 program look like? 

vrf ipv4.dstAddr / prefix action data 

1 192.168.1.0  / 24 l3_l2_switch port_id=64 

10 10.0.16.0 / 22 l3_ecmp ecmp_index=12 

1 192.168.0.0 / 16 l3_nexthop nexthop_index=451 

1 0.0.0.0 / 0 l3_nexthop nexthop_index=1 

These are the only possible actions. 
Each particular entry in the table is 

associated with ONE of these 

24 



P4.org – P4 Language Consortium 
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Maintains the language spec 
•  Three active WGs 



P4.org – P4 Language Consortium 
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Maintains key dev tools under 
Apache license 

 

•  Reference P4 programs 
•  Compiler, debugger, etc. 
•  P4 software switch 
•  Test framework 



P4.org – P4 Language Consortium 
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Open for participation 
by any individuals or 

organizations 



Systems 

P4.org Members 

Academia/ 
Research 

Targets 

Operators/ 
End Users 

Original P4 Paper Authors: 

Solutions/ 
Services 



P4 development environment 
§  Open-source P4 development tools 

§  P4 compilers & dev tools, reference P4 programs, P4-
programmable S/W switch, test framework, etc. 

§  Apache 2.0 license 
§  Available at http://github.com/p4lang 

§  Several other programmable forwarding targets 
§  Both hardware and software devices (OVS, eBPF, VPP etc.) 
§  Switches, NICs, etc. 
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What kind of cool things can you do by 
programming data planes? 

30 



§  Advanced network monitoring, analysis, and diagnostics 
§  Custom traffic monitoring and filtering 

§  FlowRadar [NSDI’16] 

§  Various modes of congestion control 
§  RCP, XCP, TeXCP, DCQCN++, Timely++ 

§  Dynamic source routing 
§  Flowlet switching, CONGA [SIGCOMM’15], HULA [SOSR’16]  

§  Embedding middlebox functions into switches 
§  In-switch L4 connection load balancing, TCP SYN authentication, etc. 

§  Offloading parts of the distributed apps 
§  SwitchPaxos [SOSR’15, ACM CCR‘16] , SwitchKV [NSDI’16] 

§  Jointly optimizing network and the apps running on it 
§  And many more …  -- we’re just starting to scratch the surface! 
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Very natural questions 

32 

“Is every packet delivered correctly and timely? 
If not, when and why? If yes, how well?” 

No switches today can answer these basic questions. 



“Which	path	did	my	packet	take?”	1	

“Which	rules	did	my	packet	follow?”	2	

# Rule 
1 

2 

3 

… 

75 192.168.0/2
4 

… 

“I	visited	switch	1	@780ns,		
switch	9	@1.3us,	switch	12	@2.4us”	

“In	switch	1,	I	followed	rules	75	and	
250.	In	switch	9,	rules	3	and	80.	”	



“How	long	did	my	packet	queue	at	each	switch?”	3	

Time	

Queue	

“Who	did	my	packet	share	the	queue	with?”	4	

“Delay:	100ns,	200ns,	19740ns”	



Time	

Queue	
Aggressor	flow!	

“Delay:	100ns,	200ns,	19740ns”	

“How	long	did	my	packet	queue	at	each	switch?”	3	

“Who	did	my	packet	share	the	queue	with?”	4	



The network should answer these questions 

“Which path did my packet take?” 
  

“Which rules did my packet follow?” 
 
“How long did it queue at each switch?” 
 
“Who did it share the queues with?” 
 

With programmable data plane, we can now answer all 
these questions, at line rate, without any latency penalty! 

1	

2	

3	

4	



Two approaches (each is a P4 program) 
1.  Packet postcards 
◦ Switch generates a small time-stamped digest for every packet  
◦ Sends to server(s) for logging and processing 
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Packet postcards 

Log,	Replay,		
Analyze,	Control	

38	



Two approaches (each is a P4 program) 
1.  Packet postcards 
◦ Switch generates a small time-stamped digest for every packet  
◦ Sends to server(s) for logging and processing 
◦ Pros: Can replay network history. Packet sizes unchanged. 
◦ Cons: Lots of extra traffic. 
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Two approaches (each is a P4 program) 
1.  Packet postcards 
◦ Switch generates a small time-stamped digest for every packet  
◦ Sends to server(s) for logging and processing 
◦ Pros: Can replay network history. Packet sizes unchanged. 
◦ Cons: Lots of extra traffic. 

2.  Inband Network telemetry (INT) 
◦ Data packets carry instructions to insert state into packet header 

40 



In-band Network Telemetry (INT) 

Log,	Replay,		
Analyze,	Control	

“Insert:	switchID,	Jme,	
matched	rules,	queue	
occupancy,	switch	
metadata,	…,		...,	...”	

Normal	Data	Packet	 Original	Data	Packet	

41	



Two approaches (each is a P4 program) 
1.  Packet postcards 
◦ Switch generates a small time-stamped digest for every packet  
◦ Sends to server(s) for logging and processing 
◦ Pros: Can replay network history. Packet sizes unchanged. 
◦ Cons: Lots of extra traffic. 

2.  Inband Network telemetry (INT) 
◦ Data packets carry instructions to insert state into packet header 
◦ Pros: No additional packets. Can replay network history. 
◦ Cons: Packet size increases. 
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In-band Network Telemetry in P4 
table int_table { 
  reads { 
    ip.protocol; 
  } 
  actions { 
    export_queue_latency; 
  } 
} 

Add TCP Options & 
copy switch ID and queue latency 

Into the options 

action export_queue_latency (sw_id) { 
  add_header(int_header); 
  modify_field(int_header.kind, TCP_OPTION_INT); 
  modify_field(int_header.len, TCP_OPTION_INT_LEN); 
  modify_field(int_header.sw_id, sw_id); 
  modify_field(int_header.q_latency, 
               intrinsic_metadata.deq_timedelta); 
  add_to_field(tcp.dataOffset, 2); 
  add_to_field(ipv4.totalLen, 8); 
  subtract_from_field(ingress_metadata.tcpLength, 
                      12); 
} 
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Demo! 
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Demo environment 
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Tofino Switch 
(6.5 Tb/s) 

Legacy Switch 

Victim 
(Receiver) 

Aggressor 
(Sender) 

Victim 
(Sender) 

Aggressor 
(Receiver) 

40G 

40G 

40G 

40G 

40G 

Queue 

Low rate 
(~400Mb/s) 

Very high rate 
(~40 Gb/s) 

[ Enable INT ] 
Add Q arrival time & 

Q depth to every 
departing packet Collect, analyze, and 

visualize Q stats 



What’s going to happen … 
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Tofino Switch 
(6.5 Tb/s) 

Legacy Switch 

Victim 
(Receiver) 

Aggressor 
(Sender) 

Victim 
(Sender) 

Aggressor 
(Receiver) 

Queue 

Low rate 
(~400Mb/s) 

Very high rate 
(~40 Gb/s) 

40G 

40G 

40G 

40G 

40G 

Queue is empty. 

INT is enabled 

QUEUE is FULL! 



What’s going to happen … 
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Tofino Switch 
(6.5 Tb/s) 

Legacy Switch 

Victim 
(Receiver) 

Aggressor 
(Sender) 

Victim 
(Sender) 

Aggressor 
(Receiver) 

Queue 

Low rate 
(~400Mb/s) 

Very high rate 
(~40 Gb/s) 

40G 

40G 

40G 

40G 

40G 

INT is enabled 

QUEUE is FULL! Queue is empty again. 



INT open-source code and spec 
§  http://p4.org/p4/inband-network-telemetry/ 

Spec Ref P4 code Demo 
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Recapping: Why is data-plane 
programmability a big deal? 
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Key benefits of programmable forwarding 

1.  New features: Add new protocols  
2.  Reduce complexity: Remove unused protocols 
3.  Efficient use of resources: Flexible use of tables 
4.  Greater visibility: New diagnostics, telemetry, OAM etc. 
5.  Modularity: Compose forwarding behavior from libraries 
6.  Portability: Specify forwarding behavior once; compile to many devices 
7.  Own your own IP: No need to tell the chip vendor your features 
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Closing remark 
 

Network is becoming a programmable platform, 
repeating the same evolution pattern that already took 

place in computing and storage industries 
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Join the 4th P4 Workshop and Developer Day, 
May/16 - 17 at Stanford (more info at http://p4.org) 



Thanks! 
 
Q&A 
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BACKUP SLIDES 
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