Programming
The Network Data Plane In P4

Uoads] BAREFSST

Changhoon Kim

chang@barefootnetworks.com

Status quo

Switch OS
EE Run-time API
“This is roughly how | process Driver

packets ...”

* Prone to bugs
* Very long and unpredictable lead time

Fixed-function ASIC

Extremely limited way of turning “beautiful ideas”
into reality

No DIY — must work with vendors at feature level

Excruciatingly complicated and involved process to build
consensus and pressure for features

Painfully long and unpredictable lead time
To use new features, you must get new switches
What you finally get !'= what you asked for

Programmable network devices come to rescue

= CPUs: 10s of Gb/s
= FPGAs, NPUs: 100s of Gb/s

* Protocol-Independent Switch Architecture (PISA) chips:
a few Th/s
= |nitial architecture introduced in RMT [SIGCOMM’13]

= Packet processing machine with fully programmable parser and generic
match-action logic

= No penalty in size, cost, and power compared to fixed-function ASICs

= PISA products available now -- in next few years this kind of silicon will
dominate

Packet forwarding speeds

100000
10000
1000

Gb/s 100
(per chip) 1 O

1
0.1

1990

6.4Tb/s

1995 2000 2005 2010 2015 2020

==Switch Chip

Packet forwarding speeds

100000 - 6.4Tb/s
10000 -
1000 -

Gb/s 100 -
(per chip) 10 ;

>

01 : ol I T T T T T 1
1990 1995 2000 2005 2010 2015 2020

T ==Switch Chip
80x =-cpu

Domain-specific processors

Signal Machine
Computers Graphics Processing Learning Networking

Matlab TensorFlow

Java OpenCL Language

>>2>

Compiler Compiler

Compiler

Compiler Compiler

CPU GPU DSP TPU

Domain-specific processors

Signal Machine _
Computers Graphics Processing Learning Networking

Java OpenCL Matlab TensorFlow SSS
Compiler Compiler Compiler Compiler

CPU GPU DSP TPU PISA

A Bg

Py jg

Sap:

4 8h-leye)
P%de;,, -
D,

h
Packe;

e o0
"Owyy flum
U8 the P e,
Providyy, the
" Propoge p,

Aexiby,
{

W) ¢

Classic
Parser g ;.

L Ton

1Mec in n

. agn,

mb]m a

[‘mu, difg,

PenFio,
or. g :
Tent p, 1

Turning the tables “upside down”

Switch ES

“ . . Run-time API
This is precisely how you ‘]

) Driver
must process packets

PISA device

(Protocol-Independent Switch Architecture)

What does this mean?

You wear

both hats ©

= To network device vendors
= S/W programming practices and tools used in every phase
= Extremely fast iteration and feature release
= Differentiation in capabilities and performance
= Can fix even data-plane bugs in the field

= To large on-line service providers and carriers
= No more “black boxes” in the “white boxes”
= Your devs can program, test, and debug your network devices all the way down
= You keep your own ideas

11

The rest of the talk:

How PISA works
Why we call it protocol-independent forwarding

What kind of cool things you can do with PISA and P4
Demo!

PISA: An architecture for high-speed
programmable packet forwarding

PISA: Protocol Independent Switch Architecture

Match Action
Memory ALU

|

e

W

14

Egress

Buffer

Ingress

PISA: Protocol Independent Switch Architecture

M

AAAAA

-J--

AAAAAA

-J--

AAAAAAN

-J--

AAAAAA

M
ARAF

AAAAA

-J--

AAAAAA

-J--

AAAAAN

-J--

AAAAAA

-J--

19sied
ajqewuweabo.id

MMM

15

PISA: Protocol Independent Switch Architecture

Match Logic Action Logic
(Mix of SRAM and TCAM for lookup tables, (ALUs for standard boolean and arithmetic operations,
Programmable counters, meters, generic hash tables) header modification operations, hashing operations, etc.)

Packet Generator

e

\

Programmable
Parser
2
HEEEEE
WW??WW

-

—Im =
—10 —
T —m=
1 |

N

Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)

4
w
S
D
o)

]
=
ol

]
]
1

A
Hooie
WWW*WWW

]

b

Recirculation

CPU (Control plane)
16

Why we call it
protocol-independent packet
processing

Device does not understand any protocols until
it gets programmed

Logical Data-plane View
(your P4 program)

Switch Pipeline
C ° 0 o 0 o o)
2 = = = = = (= = |I= Queues
o M - o] M| © = | © E |
Eg ol | <C = | < | <C Sl | <C 111
. < |IN= < |N= < |N= < |IB=
© @©
< ENE BN Bl EE | T
a = | < = < = | <C |_< = | <C
4

CLK

Mapping logical data-plane design to
physical resources

Logical Data-plane View
(your P4 program)

Switch Pipeline

® o 3 I 1
% : S (M| S B o o ke Queues
= M| = =Nl = =N = L
© © ©
© @© = =] © = - 0
Sa j2 s | > (B2 s < 11
o o o g o © < |
C

l—
P

Re-program in the field

Logical Data-plane View
(your P4 program)

Switch Pipeline

I = e

= G o | Queues
© : § ol =

e ®
©

© © = - 0

o O < | < _1T]
O N < ks

M|
o - S~

CLK

20

What exactly does the compiler do?

PHV

L ‘ir |
(Pkt Hdr Vector) : Match Table | Y

(SRAM or TCAM) ¢
e
> [[1 [
{ params
v
Action & Instr
mmnm Mem LU

‘lllllllt

1 =
o B Queues
%&’ = —11
& =]

)
—
A

21

What does a P4 program look like?

MyEncap

header_ type ethernet t {
fields {

dstAddr : 48;

srcAddr : 48;

parser parse ethernet {
extract (ethernet);
return select(latest.etherType) {
0x8100 : parse_vlan;

header_type my encap t {
fields {
foo : 12;
bar
baz
qux :
next protocol : 4;

22

What does a P4 program look like?

table ipv4 1»-m
{

reads {

ipv4.dstAddr control ingress

{
apply(12);
apply(my_encap) ;
if (valid(ipv4) {
apply (ipv4_lpm);
} else {
apply (ipv6_lpm);
}
action set next hop(nhop ip A iEetl) g
{

modify field(metadata.nhop ipv4 addr, nhop ipv4 addr);
modify field(standard metadata.egress port, port);
add_to field(ipv4.ttl, -1);

23

What does a P4 program look like?

/* Example: A typical IPv4 routing table */
table ipv4 lpm {

port_id=64

ecmp_index=12

nexthop_index=451

reads {
ingress_metadata.vrf : exact;
ipv4.dstAddr : lpm;
}
actions { _ .
nop; These are the only possible actions.
13_12_switch; Each particular entry in the table is
13 multicast; associated with ONE of these
13 nexthop;
13 ecmp;
} —
\ size : 65536; 1 192.168.1.0 /24 13_12_switch
10 10.0.16.0/ 22 13 _ecmp
1 192.168.0.0 / 16 I3_nexthop
1 0.0.0.0/0 I3 _nexthop

nexthop_index=1

24

P4.org — P4 Language Consortium

_/

It's time to say "Helle

P4 prog

Maintains the language spec
Protos » Three active WGs

SPEC CODE NEWS JOIN US BLOG

,'<ll

Target\
P4 is suita =

performance forwarding ASICs to software switches.

Field Reconfigurable
P4 allows network engineers to change the way their
switches process packets after they are deployed.

size:

}

control ingress {
apply (routing) ;

}

P4.org — P4 Language Consortium

It's time to say "He!'! ork"

Maintains key dev tools under
Apache license

 Reference P4 programs
 Compiler, debugger, etc.
* P4 software switch

» Test framework

-

P4.org — P4 Language Consortium

& mea

SPEC CODE NEWS JOIN US

It's time to say "Hello Network"

Open for participation
by any individuals or
BOARD MEMBERS - -
Three Board Members oversee the consortium: o rg a n |Zat| o n s

ao_arop .,
route_ipv4d;

}
size:

}

control ingress {
apply (routing) ;

}

Nick McKeown Jennifer Rexford Amin Vahdat

Stanford University Princeton University Google

R

P4.org Members

Original P4 Paper Authors: /-7 \ Stanford
BAREFOOIT Goggle (intel Be Microsoft W TRNCETON University
aba Cro _.00. goldman
Operators/ Puweein BaidbsR FOX = a8 Microsoft e ~Tencenthi
End Users & atat COMCAST GOUS[Q kt SK ‘telecom
s alual, : @ QD Bl MNoviFlow
Systems BROCADE® ‘[0" Ncoasa D/sHOC . Hewlett Packard \7< InventecC JuniPer NETB’bERG NOVIFlow
Targets AEEZNYX g B B (nted
%o RE © BROADCOM Qp centee =“freescale /;é Mellanox
M&Sys &> prumgis vmware £ XILINX
Solutions/ e GloBAl SONLAB
Services [HiNet e Riﬁﬂif“ ITECH @ b2 W 48] 4R R ®EI?EQW
3 % PRINCETON W i -
Academia/ . Lk 'UNWE*ESTITY R I"“! “ & -
Research k =) i “'\EOWOSLora“d .Pourecmco 8 @) == stanford """ uFi ['
\&L}/ \Q}/ University mumoma igf} @ University g:;gg?';g Vlrgll"g%tat}:%gz

P4 development environment

Open-source P4 development tools

= P4 compilers & dev tools, reference P4 programs, P4-
programmable S/W switch, test framework, etc.

= Apache 2.0 license
= Available at http://qgithub.com/p4lang

Several other programmable forwarding targets
= Both hardware and software devices (OVS, eBPF, VPP etc.)
= Switches, NICs, etc.

What kind of cool things can you do by
programming data planes?

Advanced network monitoring, analysis, and diagnostics]

Custom traffic monitoring and filtering
= FlowRadar [NSDI’16]

Various modes of congestion control
= RCP, XCP, TeXCP, DCQCN++, Timely++

Dynamic source routing
= Flowlet switching, CONGA [SIGCOMM’15], HULA [SOSR’16]

Embedding middlebox functions into switches
= In-switch L4 connection load balancing, TCP SYN authentication, etc.

Offloading parts of the distributed apps
= SwitchPaxos [SOSR’15, ACM CCR16] , SwitchKV [NSDI’'16]

Jointly optimizing network and the apps running on it
And many more ... -- we're just starting to scratch the surface!

Very natural questions

“Is every packet delivered correctly and timely?
If not, when and why? If yes, how well?”

No switches today can answer these basic questions.

32

€ “Which path did my packet take?” “I visited switch 1 @780ns,
switch 9 @1.3us, switch 12 @2.4us”

l 1
2
3

“In switch 1, | followed rules 75 and
250. In switch 9, rules 3 and 80. ”

75 192.168.0/2

p @ “Which rules did my packet follow?”

€© “How long did my packet queue at each switch?”

“Delay: 100ns, 200ns, 19740ns”

e

Queue

Q “Who did my packet share the queue with?”

Time

9 “How long did my packet queue at each switch?”

“Delay: 100ns, 200ns, 19740ns”

Aggressor flow! e

@ “Who did my packet share the queue with?”

Queue

v

Time

The network should answer these questions

G “Which path did my packet take?”
€ <Which rules did my packet follow?”

€© «How long did it queue at each switch?”
@ “Who did it share the queues with?”

-,

With programmable data plane, we can now answer all
these questions, at line rate, without any latency penalty!

Two approaches (each is a P4 program)

1. Packet postcards
o Switch generates a small time-stamped digest for every packet
o Sends to server(s) for logging and processing

37

Packet postcards

Cur’s

Log, Replay,
Analyze, Control

38

Two approaches (each is a P4 program)

1. Packet postcards
o Switch generates a small time-stamped digest for every packet
o Sends to server(s) for logging and processing
o Pros: Can replay network history. Packet sizes unchanged.
o Cons: Lots of extra traffic.

39

Two approaches (each is a P4 program)

2. Inband Network telemetry (INT)
o Data packets carry instructions to insert state into packet header

40

In-band Network Telemetry (INT)

Original Data Packet

—

Normal Data Packet _

“Insert: switchlD, time,
matched rules, queue
occupancy, switch
metadata, ..., ..., ...

Log, Replay,
Analyze, Control

41

Two approaches (each is a P4 program)

2. Inband Network telemetry (INT)
o Data packets carry instructions to insert state into packet header
o Pros: No additional packets. Can replay network history.
o Cons: Packet size increases.

42

In-band Network Telemetry in P4

table int table { action exporthueue_latency (sw_id) {
- add _header (int_header) ;

reads
¢ modify field(int header.kind, TCP_OPTION_INT);

ip.protocol;

}

actions { modify field(int header.sw_id, sw_id);
export queue latency; modify_field(%nt_yeaéer.q_latency, .
} - - intrinsic_metadata.deq_timedelta);

}

add to_field(ipv4.totalLen, 8);
subtract from field(ingress metadata.tcpLength,
12);

Add TCP Options &

copy switch ID and queue latency
Into the options

43

Demo!

Demo environment

/ Tofino Switch \

(6.5 Thls)

Aggressor grnle Aggressor

(Sender) Very high rate 2UCPY (Receiver)
Ty -('“40 Gb/s) Queue Legacy Switch

b L L L 1 ¥ 3 il

Low rate

(Sender) 40G

Victim
{Receiver)

N\
40G 18

[Enable INT]

Add Q arrival time &
Q depth to every

\ departing packet / Collect, analyze, and
visualize Q stats

45

What’s going to happen ...

Aggressor
(Sender)

40G

/ Tofino Switch
(6.5 Tb/s)

Very high rate
(~40 Gb/s)

= Low rate

(~400Mb/s)

INT is enabled

<

~

o

N

Aggressor
(Receiver)

\ {Receiver)

QUEUE is FULL!

46

What’s going to happen ...

Aggressor
(Sender)

40G

Very high rate
(~40 Gb/s)

/ Tofino Switch
(6.5 Tb/s)

ma te

<

(~400Mb/s)

INT is enabled

~

o

Aggressor
(Receiver)

{Receiver)

Queue is empty again.

47

INT open-source code and spec
= http://p4.org/pd4/inband-network-telemetry/

hrome File Edit View History Bookmarks People Window Help D E 3 = o E= 63% @) WedOct28 5:01 PM Chang Kim Q

R improving Network Monitor x (G pAlacton/iamssia/anilchiatio: ch

C' | || p4.org/p4/inband-network-telemetry/
[2 Work 4 Bookmarks [Other B¢

NEWS JOIN Us

Improving Network Monitoring and Management with Programmable Data Planes

By Mukesh Hira & LJ Wobker Recent Posts
Quicklinks :

Compute virtualj ed to an extension of the network into the
twork services — logical

er network interfaces.
sical network so as to
enable deployment of virtual services over any physical network infrastructure, the only requirement from the physical
network being IP connectivity between the hypervisors.

While the decoupling of physical and virtual topologies has advantages, it is important to have some interaction between
the physical and virtual switches to allow for end-to-end monitoring of the entire physical + virtual network from a “single Archives
pane of glass” and to help in troubleshooting and fault isolation in complex physical + virtual topologies.

We propose methods for various network elements to collect and report their state in real-time, allowing for improved
cooperation between the virtual and physical layers without requiring intermediate layers such as CPU driven control
planes. The general term we have applied to these methods is INT: Inband Network Telemetry.

Some examples of useful network state to be reported by network elements are —

(i) <Switch-ID, Input port ID, output port ID> — This allows for determination and monitoring of the different paths between Categories
a pair of end-points. Current mechanisms for determining multiple paths between a pair of end-points are based on IP

aceroute ananlv disco al-cost |lave path MP routes) b a gverq xiste

48

Recapping: Why is data-plane
programmability a big deal?

NOo gk ON-=

Key benefits of programmable forwarding

. New features: Add new protocols

Reduce complexity: Remove unused protocols

Efficient use of resources: Flexible use of tables

Greater visibility: New diagnostics, telemetry, OAM etc.

Modularity: Compose forwarding behavior from libraries

Portability: Specify forwarding behavior once; compile to many devices
Own your own IP: No need to tell the chip vendor your features

Closing remark

Network is becoming a programmable platform,
repeating the same evolution pattern that already took
place in computing and storage industries

Join the 4t P4 Workshop and Developer Day,

May/16 - 17 at Stanford (more info at http://p4.org)

51

Thanks!

Q&A

BACKUP SLIDES

