Shared Measurement Services

Sonia Fahmy (Purdue University)
Puneet Sharma (HP Labs)

Leverages prior work joint with: Praveen Yalagandula, Sujata Banerjee, Sujoy Basu, SJ Lee (HP Labs), Ethan Blanton, Sriharsha Gangam, Greg N. Frederickson (Purdue University)

http://networking.hpl.hp.com

http://www.cs.purdue.edu/homes/fahmy/

Motivation

- Experimenters, system administrators, and applications require real-time comprehensive network state
 - For fault diagnosis or increasing performance
- Current network state information
 - Centralized or fragmented → not scalable; no E2E picture
 - Device-centric → Not flow-centric
 - SNMP-based (typically >5-min frequency) → not realtime
 - Limited exposure of only a few metrics

Most Related GENI Projects

- Started spiral 1
 - U of Wisconsin
 - U of Kentucky
- Starting spiral 2
 - U of Delaware
 - OSU
 - Perhaps others...

Goals

- Provide system state in real-time
 - Both network and node state
 - Active and passive
 - E2E or leverages network element info when available
- Flexible and extensible
 - Easy to add new measurement tools to be developed!
 - Configurable time scales (start time, frequency, number)
 - Support complex queries
 - To which node do I have the largest bandwidth?
 - Which game server is within 10ms latency?
- Share measurement info across applications
 - Eliminate redundant expensive measurements
- Scalable, secure, and reliable

Challenges with Existing Tools

- Tools previously tested only in point-to-point configurations
- Deployment in a large scale setting exposed several issues
 - Hard-coded port numbers leading to port conflicts
 - Need to be started at source and destination simultaneously
 - Large resource requirements leading to end-node crashes
 - Long running times leading to web server timeouts

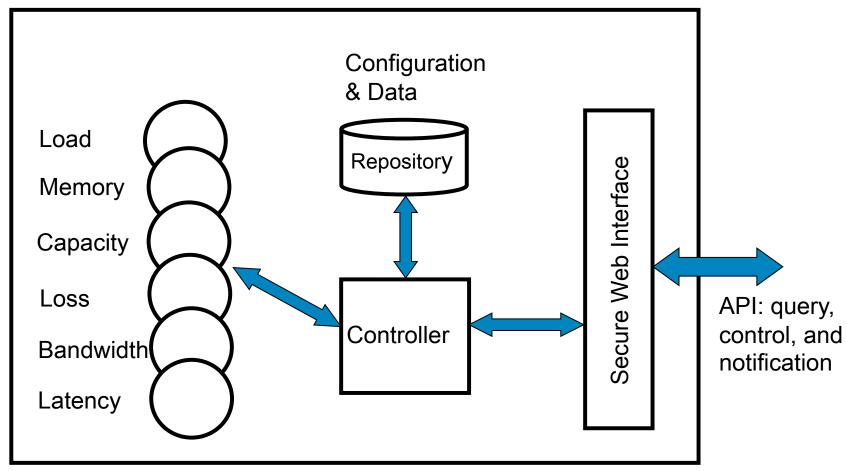
Scalable Sensing Service (S³)

Sensor pods

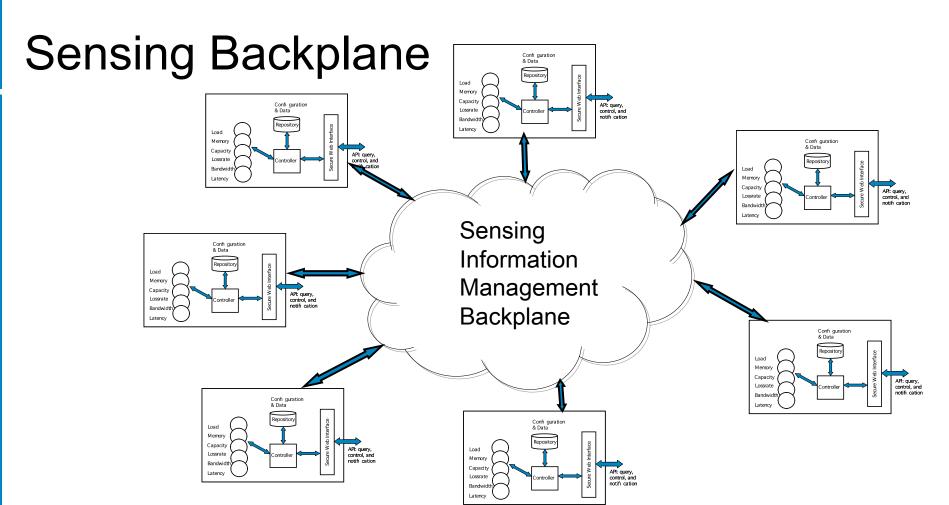
- Measure system state from a node perspective
- Web-Service enabled collection of sensors

Backplane

- Distributed programmable fabric
- Connects pods, and aggregates measured system state


Inference engines

- Infer O(n²) E2E path info by measuring a few paths
- Dynamically schedules measurements on pods
- Aggregates data on backplane



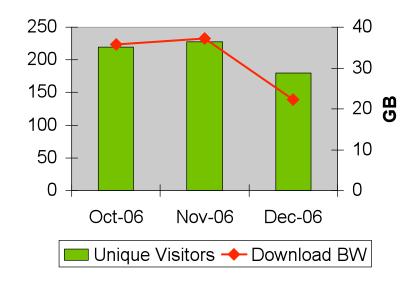
Sensor Pod

Web-Service (WS) enabled collection of sensors

- Aggregate data from end-points
- Answer queries
- E.g., SDIMS [SIGCOMM 2004]

Scalable Inference Engines

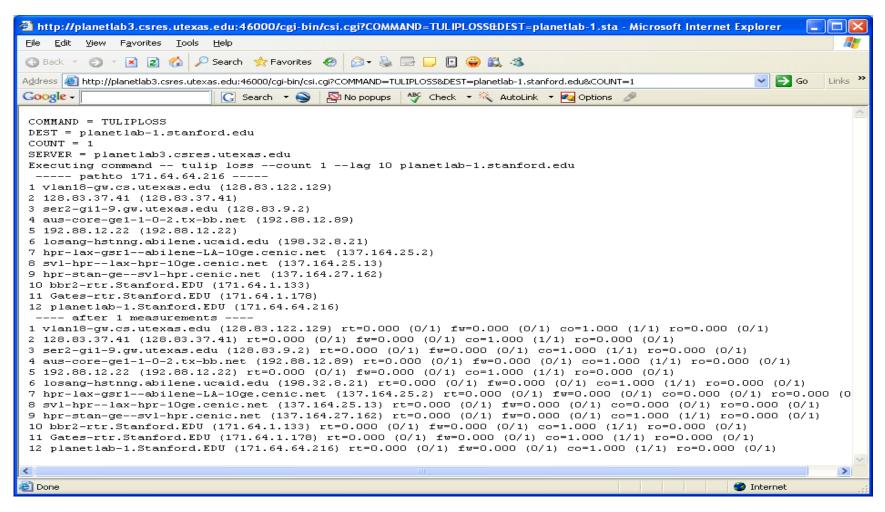
- Large overhead for probing and data exchange
 - O(N²) measurements in a network of N nodes
 - Dynamically changing
 Need frequent probing
- Measurement/Monitoring failures
 - Failed or slow end machines
 - Measurement tool failures
- Inference based on incomplete information
 - Exploit properties such as triangular inequality
 - A coarse estimate may suffice for many applications
- Prediction based on archived information
- Tradeoff between accuracy and overhead
- When and where to use inference? [Blanton et al., ICDCS09]


Prototype Deployment on PlanetLab

- 700+ nodes scattered across 350+ sites
- Running since January 2006
- All pair network metrics: E2E latency, BW, Capacity, Loss
- Simple backplane: central server
 - Maintains pods, schedules measurements, collects and publishes data
- Stats:~14GB raw data every day, ~1GB compressed

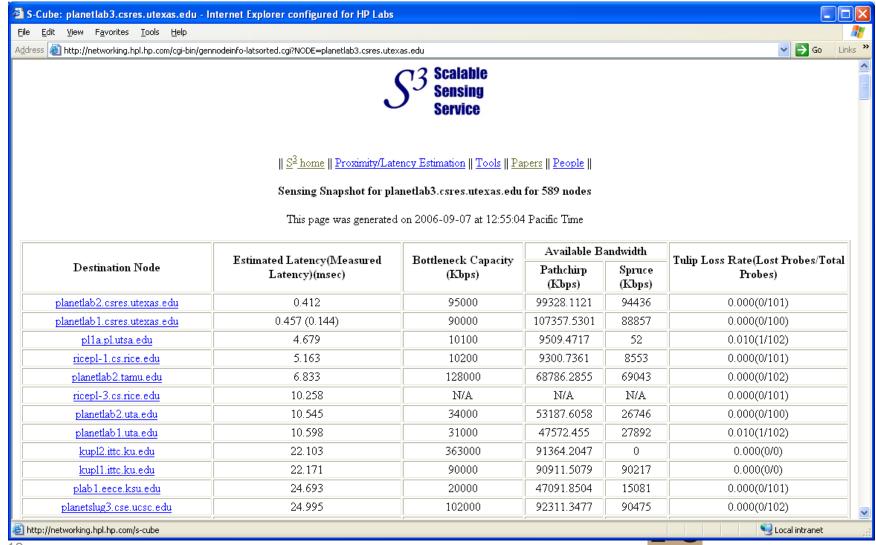
S³ Data Usage

- Web server stats (2006):
 - -~200 unique visitors/month
 - ~20GB download BW/month



Projects

- HP Labs: Bandwidth inference, Resource-aware monitoring, semantic store
- Others: Purdue University, MSR, U of Washington, Georgia Tech, Harvard, Princeton, Boston University, etc.



Screenshot: Hop-by-hop Loss Sensor

S³ Screenshot

Planned Work

- On-demand measurements at user defined times, frequencies, and tolerance to error/staleness
 - Policy-based scheduling and priorities
 - Estimation of load introduced by measurement probes
- Dynamic invocation of inference mechanisms based on measurement request workload
- Backplane for aggregation and queries
- Integration

Needs

- Duration:
 - Continuously running
- Layering:
 - Uses legacy tools running on IP/UDP/TCP/HTTP
- Domain:
 - Currently storage, CPU
- Scale:
 - -AII
 - Measurement fidelity

Selected Publications

- http://networking.hpl.hp.com/s-cube
- Ethan Blanton, Sonia Fahmy, Greg N. Frederickson, "On the Utility of Inference Mechanisms," In Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS), 8 pp., June 2009.
- Ethan Blanton, Sonia Fahmy, Sujata Banerjee, "Resource Management in an Active Measurement Service," In Proceedings of the IEEE Global Internet Symposium, 6 pp., April 2008.
- P. Yalagandula, P. Sharma, S. Banerjee, S.-J.Lee, and S. Basu, <u>S3: A Scalable Sensing Service for Monitoring Large Networked</u> <u>Systems,"</u> In *Proceedings of the Workshop on Internet Network Measurement 2006,* Pisa, Italy, September 2006.
- Praveen Yalagandula, Sung-Ju Lee, Puneet Sharma, and Sujata Banerjee,
 "Correlations in End-to-End Network Metrics: Impact on Large Scale Network Monitoring," In IEEE Global Internet Symposium, Phoenix, AZ, April 2008.

