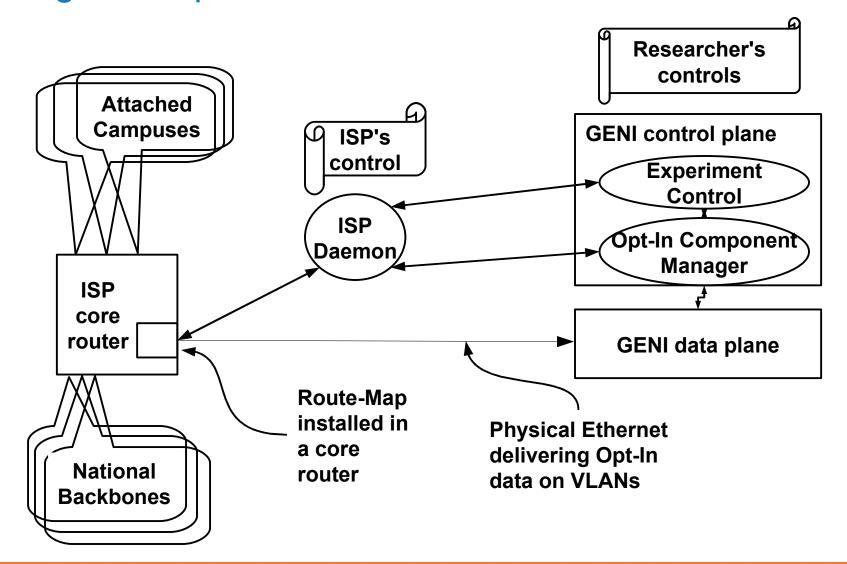
Matt Mathis
Pittsburgh Supercomputing Center (PSC)
and
Three Rivers Optical Exchange (3ROX)

GEC 4 2-Apr-2009

- Interpose GENI at regional interconnects
- Intercept "innocent user" traffic
 - AKA wholesale Opt-in
 - Completely authentic traffic
 - Intrinsically Layer 3
- Want a strongest possible position:
 - (Eventually) Ask NSF to encourage participation
 - Progressive: Specific programs, then CNS, CISE, all NSF
 - Complete control of user impact
 - Minimize unexpected consequences
 - Avoid outages
 - Avoid leaking PII (Personally Identifiable Information)
 - Fully motivate all actors



Outline

- Technical Overview
- Scaling really large
- Constraints as seen from:
 - GENI (Researchers)
 - IRB (Opt-In users)
 - ISP (other users, aka customers)

Seewiki/RegionalOptIn/OptInReqs.pdf

Implementation at 3ROX

- Non-profit GigaPoP run by PSC
 - CMU, PITT, PSU, WVU, most k-12 in western PA
 - Libraries, museums, etc
 - Some commercial sites
 - Roughly 200k users
- Connections to multiple backbones
 - NLR, I2, (ETF), NLR transit rail
 - Sprint, Global Crossing
- Redundant core routers
 - Approximately \$250k each

Opt-In Intercept

- Use OpenFlow, route-map, or firewall-filter
 - ACL style packet header match
 - Implemented in Ternary Content Addressable Memory (TCAM)
 - Applies some action to override regular routing
- Can match many combinations of fields
 - From: CMU to: Stanford
 - Port 53 (DNS)
 - Student housing subnets
 - DSCP/TOS byte
 - Include or exclude individual IP addresses

ISP Daemon

- Provides isolation between ISP and GENI
 - Owned, controlled and audited by ISP
 - GENI does not need direct access to ISP resources
- Facilitates managing risks......

The GENI control plane needs two levels

- Opt-In Component Manager
 - Opt-In looks like a specialized link
 - Connects the Intercept to other GENI resources
- Experiment Control (aka Slice Manager)
 - Responsible for overall integrity of the experiment
 - Primary/preferred experimenter's console
 - Don't enable Opt-In unless the entire slice is ready
 - Inhibit sliver/slice deallocation/preemption
 - Disable Opt-In before shedding resources
 - Liveness checks and monitoring
 - First level "safety controls"
 - Automatic shutdown on failures

Thinking about really big scales

- Might Interpose GENI on all traffic
 - Intercept 100% of US R&E traffic if we want
- Must address broader issues
 - Motivating all actors
 - Managing risk at all levels
- Easiest approach is to think about stakeholders
 - GENI
 - Constituents: Researchers
 - The IRB
 - The innocent users (experimental subjects)
 - The ISP
 - The ISP staff and all users

Stakeholders: GENI & Researchers

- Researchers drive the process
 - Researchers want users
 - Active users: choose to participate e.g. want advanced services
 - Innocent users: did nothing and may be unaware
 - Specify experiments
 - Engage IRB
 - Negotiate intercept pattern matches w/ ISP
- Need to manage their user base
 - Tension between stability and flexibility

Managing the user base

- Core tension between users and researchers
 - Researchers need both innocent and active users"
 - Users want stable (advanced) services
 - Researchers want to change things
- Three example Opt-In scenarios
 - Simple Opt-In
 - Version agility for sustained Opt-In
 - Weaning users from an experimental service

Simple Opt-in Scenarios

- Short running or small scale experiments
- IP address based
 - Individual (enumerated) Opt-In
 - IP prefix block (subnet)
 - IP prefix block (subnet) except individual Opt-out
 - Ultimately need to be able to do dynamic updates

Version agility for sustained Opt-In

- Allocate two long lifetime slices
 - Alpha slice with Individual Opt-In for developers, etc
 - Frequent changes and restarts
 - Beta slice with Wholesale Opt-In
 - One stable version
- Upgrade services by exchanging Opt-In filters
 - Alpha slice becomes new beta w/ Wholesale Opt-In
 - Beta slice disassembled and rebuilt for new alpha
- Claim: Researchers can have full version agility as long as they consider their own internal version compatibility issues.
- Regional Opt-In facilitates gracefully upgrading an experimental services.

Weaning users from an experimental service

- Assume you have a success disaster:
 - Experimental service with limited resources
 - Too many addicted and demanding users
 - They continue to invite their friends to Opt-In by word of mouth
- Convert from wholesale to individual Opt-in
 - Automate the individual (re)Opt-In process
 - Disallow new users
 - Require periodic renewals
 - But make them progressively harder

Long term goal: fully manage Opt-In for all users

Stakeholders: IRB and Users

- Institutional Review Board
- Supervises all experiments on Human Subjects
 - Explicitly responsible for protecting user interests
- See CFR Title 45, Part 46
 - "Protection of Human Subjects"
 - NSF version: CFR Title 45, Part 690
- Two standard review protocols (or tracks)
 - Social Sciences and Biomedical
- The main rules:
 - Subject has to give informed consent
 - Must protect Personal Identifiable Information (PII)
 - Must balance/justify the risks

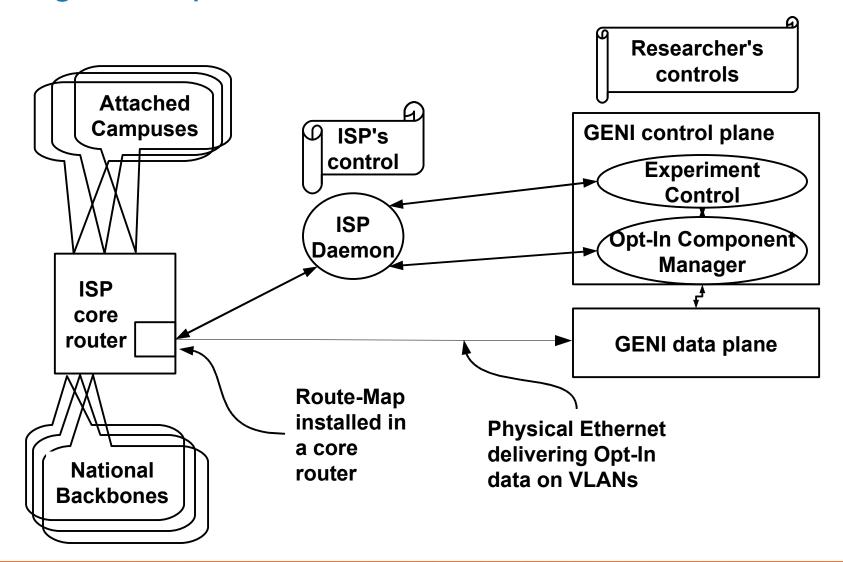
Network research, Opt-In and the IRB

- Informed Consent isn't generally feasible
 - Akin to field testing new highway detour signs
 - Exception are permitted but need extra considerations
 - E.g. Public notices, Opt-out instructions
- Primary risks are technical issues
 - Interactions with obscure or experimental services
 - Most users frequently "Opt-In" to new services
 - Unintended PII leaks
 - Inferences about trace data, etc
- These all require accurate risk assessment
 - Technology issues may be more subtle than ethics

The IRB and telecom law

- (I am not a lawyer)
- Strong, IRB supervised, PII protection may be sufficient to placate telecom lawyers
- There are existing procedures to protect IRB supervised studies from subpoena
 - E.g surveys about criminal activities and drug use
 - But the actual wording is completely general

Stakeholders: ISP and other users


- ISP is responsible to its customers
- Opt-In failures hurt everyone
 - Not just the experimental subjects
 - Especially the ISP staff
- Opt-In mechanism itself must be ISP grade
 - Not "GENI grade"
 - Direct price of service is several dollars per second
 - Indirect cost is probably orders of magnitude higher
- Need to strongly manage all risks
 - Opt-In must not expose core routers to rogue actors

ISP Daemon to isolate risks

- Proxy between GENI and core router
 - Owned and managed by the ISP
 - Can be audited/instrumented per the ISP's interests
 - Participates in the ISP's private authentication
 - Participates in the GENI control plane
- ISP must have ultimate control over Opt-In
 - E.g. may veto Opt-In during unrelated failures
 - Otherwise any ISP will refuse to participate
- Enforce IRB "Human Subjects" policies
 - May only be the high bit
 - IRB permissions required for most experiments
 - Automatic exceptions for "self" if not a shared syst

