SARA: Segment Aware Rate Adaptation for DASH Video Services

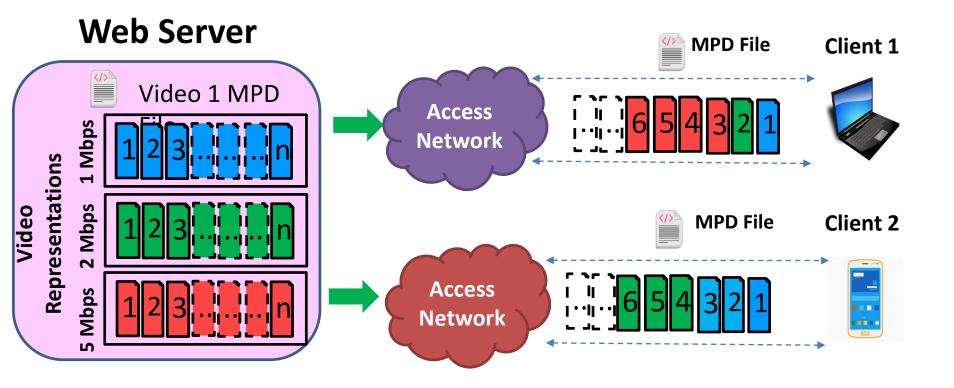
Parikshit Juluri[†], Venkatesh Tamarapalli^{*}, Deep Medhi[†]

†University of Missouri – Kansas City

*Indian Institute of Technology-Guwahati, India

Overview

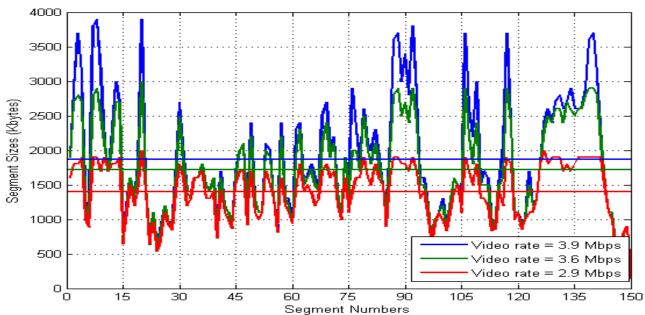
- Introduction
- DASH Overview
- Related Work & Motivation
- Segment Aware Rate Adaptation Algorithm
- Experiment Setup & Evaluation
- Demo



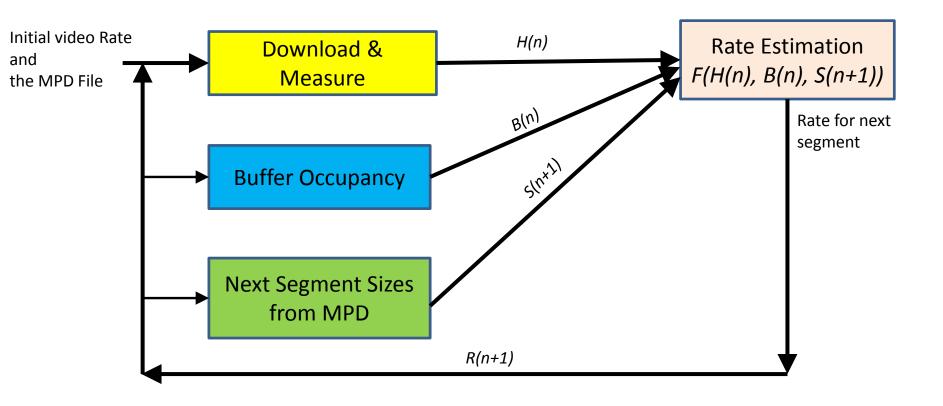
Introduction

- HTTP Video streaming is the most popular service over the Internet
- In North America, Netflix and YouTube accounted for 43% of the peak hour download traffic in 2014.
- Advantages of HTTP based video streaming:
 - Reuse of existing web architecture
 - NAT/Firewall transversal
- DASH improves QoE by adapting the bitrate based on network conditions

DASH Overview


Related Work

- ABR Algorithms: Determine the bitrate for the next segment
- ABR algorithms of 3 popular video streaming services (Netflix, HULU, OSMF player) were found to have limitations [1]
 - Too slow to converge
 - Too many bitrate switching events
 - Just not good enough QoE
- Categories of current ABR algorithms
 - Throughput Based [2][3][4]
 - Buffer Occupancy Based [5]
- [1] S. Akhshabi, A. C. Begen, and C. Dovrolis, "An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP," in Proc. of the ACM conf. on Multimedia systems, 2011.
- [2] C. Liu, I. Bouazizi, and M. Gabbouj, "Rate adaptation for adaptive HTTP streaming," in *Proc. of the 2nd ACM conf. on Multimedia systems*, 2011.
- [3] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, "Adaptation algorithm for adaptive streaming over HTTP," in *Packet Video Workshop (PV)*, 2012 19th International.
- [4] J. Jiang, V. Sekar, and H. Zhang, "Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE," in *Proc. of the 8th Emerging networking experiments and technologies*, 2012.
- [5] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, "A buffer-based approach to rate adaptation: Evidence from a large video streaming service," in Proc. of the ACM SIGCOMM, 2014.


Motivation

- To improve the QoE of DASH
 - Video Quality,
 - bitrate switching,
 - convergence
- Current algorithms assume the segment sizes are constant (average segment size)
- The size of the HTTP objects affects the throughput

Rate Adaptation Model

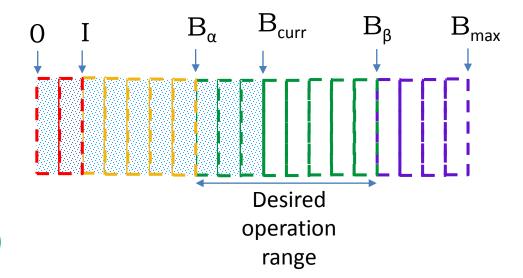
SARA: Segment Aware Rate Adaptation

- Enhanced MPD File
 - List the individual segment sizes during the pre-processing stage
- Throughput Estimation: Weighted Harmonic Mean

$$H_n = \frac{\sum_{i=1}^n \omega_i}{\sum_{i=1}^n \frac{\omega_i}{d_i}}$$

Smart Segment Fetch Times

$$T_{n+1} = \frac{\omega_{n+1}^i}{H_n}, \quad i \in List \ of \ bitrates$$


Buffer Occupancy

SARA: Buffer Mapping

Buffer Map Thresholds

- 1. Fast Start ($0 < B_{curr} \le I$)
 - Select the minimum bitrate to minimize playback start time
- **2.** Additive Increase (I < B_{curr} \le B_{α})
- 3. Aggressive Switching ($B_{\alpha} < B_{curr} \le B_{\beta}$)
- 4. Delayed Download ($B_{\beta} < B_{curr}$)

SARA: Algorithm

Algorithm 1: Segment Aware Rate Adaptation Algorithm

Data:

```
\mathbb{R} : Set of available bitrates \{r^{min}, ..., r^i, ..., r^{max}\}
I, B_{\alpha}, B_{\beta}, B_{max}: Buffer constants (number of segments)
Input:
n: Segment number of the most recent download
r<sup>curr</sup>: Bitrate of the most recently downloaded segment
B_{curr}: Current buffer occupancy in seconds
W_{n+1} = \{w_{n+1}^{min}, ...w_{n+1}^{i}, ...w_{n+1}^{max}, \} The sizes of the
segments for bitrates \{r^{min}, ..., r^m, ..., r^{max}\}
respectively
H_n: Weighted Harmonic mean download rate for the first
n segments
Initialization:
if B_{curr} \leq I
                                             // Fast Start
then
 l_{n+1} = r^{min}
```

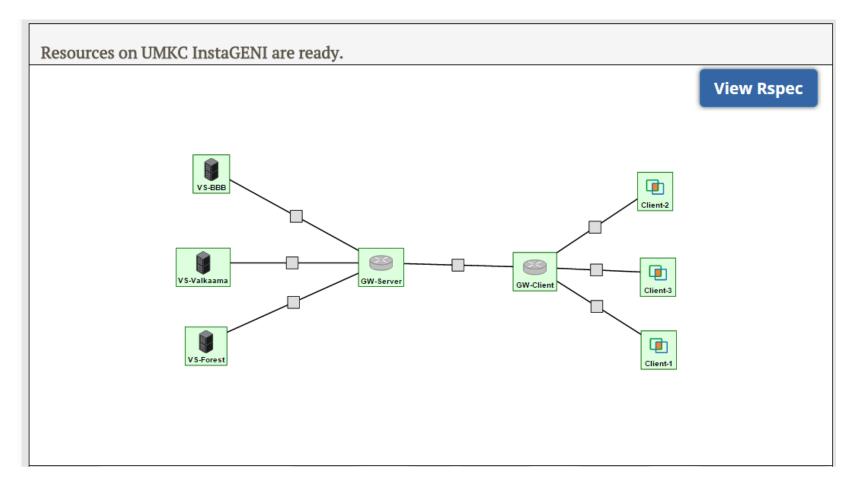

SARA: Algorithm (contd..)

Result:

 l_{n+1} : the bitrate of the next segment to be downloaded δ : The wait time before downloading the next segment

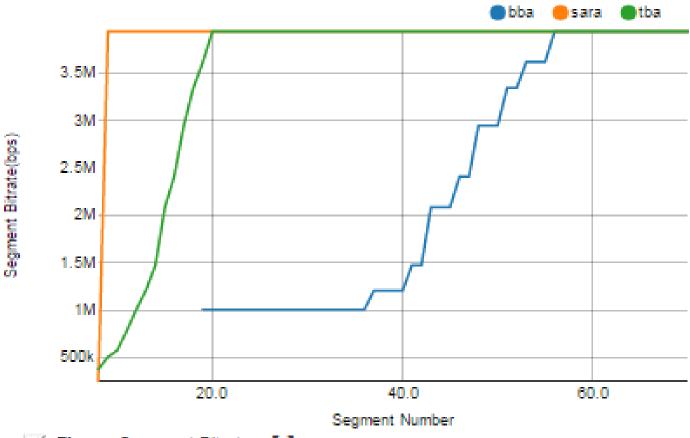
Setup & Evaluation

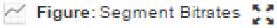
Astream


- Python based emulated DASH client
 - Rate Adaptation Modules:
 - Throughput Based (tba)
 - Buffer Based (bba)
 - SARA
 - Available on Github: http://github.com/pari685/AStream

Evaluation Scenarios

- Limited Bandwidth
- Short Interruptions
- Long Interruptions
- For more details please refer to
 P. Juluri, V. Tamarapalli, and D. Medhi, "SARA: Segment Aware Rate Adaptation algorithm for Dynamic Adaptive Streaming over HTTP," in ICC QoE-FI Workshop, June, 2015




GENI Topology

Sample LabWiki Output

GEC23

Thanks! Questions or Comments?

