

Adaptive Medium Access Control in Wireless Networks

Research Works in Progress Session

D. Garlisi¹, F. Giuliano¹, A. Lo Valvo¹, J. Lutz², V. R. Syrotiuk², I. Tinnirello¹
Università di Palermo¹, Arizona State University²

GENI Engineering Conference 23-251 March 2015 Washington, DC

Overview

→ Medium access control in wireless networks

- ⇒Idea that a node's persistence should depend both on topology and load
- ⇒Computed by REACT distributed auction
- ⇒Integrate into IEEE 802.11 protocol
- ⇒Testbed implementation and experimentation

Topology- and Load-Aware Persistence

→ Desirable properties:

- ⇒No receiver is overrun
- ⇒No transmitter gets a persistence greater than it can use
- ⇒No transmitter is permitted to monopolize the channel
- ⇒Persistences are maximized subject to the constraints of the first three properties

→ Computed by REACT, a distributed auction

Example of REACT

IEEE 802.11 with REACT

→ How to move from a persistence to a contention window?

- ⇒Let I be the time interval between consecutive channel accesses in slots
- ⇒Let T be the DATA-ACK duration in slots

 \Rightarrow Then the allocated rate for node i is: $s_i = T/E(I)$

IEEE 802.11 with REACT (cont'd)

→The expected duration of the idle time is therefore:

E[idle] = E[I] - E[busy] - T

STA i STA i

 \Rightarrow E[idle] must equal the expected time backing off, W/2 σ ,

where σ is the slot width

⇒Solve for W!

How to Experiment with a New MAC?

→ Find a 'programmable' hardware platform

- ⇒SDR platforms have performance limits
- ⇒FPGA platforms can be too complex
- ⇒ Commercial WiFi cards with open-source driver/firmware (Atheros/Broadcom)

How to Experiment with a New MAC?

→Build your own testbed or use a remote available testbed

- ⇒ CREW federated testbed!
- Not only wireless platforms, but also advanced programming interfaces
- ⇒Availability of control tools for experiment set-up and monitoring
- ⇒ Large-scale node deployment (about 200 nodes available!)

Architecture

Simple Chain Topology

Under standard DCF:

- When RTS frames sent by node B fail (because node C was waiting its CTS), only node A considers the channel busy for the whole NAV
- **Asymmetries** on channel busy time imply heterogeneous channel allocations and throughput

Normalized Airtime as a function of Time

Generalization

REACT under Dynamic Traffic

REACT Benefits in Multi-hop Contention-based Networks

- → Avoid flow starvation
- → Mitigate collision rates
 - ⇒RTS/CTS alone have limited effectiveness
 - ⇒Collisions may also occur on DATA frames with severe resource consumption
- → Provision temporal fairness
- →Short-term access fairness (reduced delay jitter)

Future Plans

- →Improve and extend the MAC programming interface
- → From context-specific optimized MAC to auto-programmable MAC!
 - ⇒Implementation of machine-learning mechanisms based on meta-MAC
- → Identify most relevant factors affecting experimental results
 - ⇒Novel solutions for reducing the design space

Our thanks!

We are grateful to the GPO for providing travel support to encourage this collaboration!