
Adaptive Medium Access Control
 in Wireless Networks

Research Works in Progress Session

D. Garlisi1, F. Giuliano1, A. Lo Valvo1, J. Lutz2,

V. R. Syrotiuk2, I. Tinnirello1
Università di Palermo1, Arizona State University2

GENI Engineering Conference
23-251 March 2015

Washington, DC

Overview

è Medium access control in
wireless networks
ð Idea that a node’s persistence should depend both

on topology and load
ð Computed by REACT distributed auction
ð Integrate into IEEE 802.11 protocol
ð Testbed implementation and experimentation

Topology- and Load-Aware
Persistence

è Desirable properties:
ð No receiver is overrun
ð No transmitter gets a persistence greater than it can use
ð No transmitter is permitted to monopolize the channel
ð Persistences are maximized subject to the constraints of

the first three properties
è Computed by REACT, a distributed

auction

Example of REACT

•
.
.
.
.

•

Bidirectional Link

w
3

= 0.50
s
3

= 0.25

Node # 2

w
2

= 0.55
s
2

= 0.25

w
1

= 0.45
Node # 1

s
1

= 0.25

Node # 4

w
4

= 0.40
s
4

= 0.25

Node # 5

w
5

= 0.75
s
5

= 0.45

Node # 6

w
6

= 0.05
s
6

= 0.05

Node # 3

Jonathan Lutz 5

IEEE 802.11 with REACT

è How to move from a persistence
to a contention window?
ð Let I be the time interval between consecutive

channel accesses in slots
ð Let T be the DATA-ACK duration in slots

ð Then the allocated rate for node i is: si = T/E(I)

Ilenia Tinnirello

Channel Access Rate (1)

!  If CW is fixed, assume that consecutive channel accesses
performed by the tagged station are renewal instants

! Let s_k the allocation rates for each station k (in terms of
channel occupancy ratio)

!  If I is the time interval between consecutive channel
accesses in slots and T the packet/ACK duration in slots,
the allocated rate for the tagged station is
" T slots/E[I]=s_i

 from which we can obtain the desired E[I]*

STA i STA i

I

IEEE 802.11 with REACT (cont’d)

è The expected duration of the idle
time is therefore:

E[idle] = E[I] – E[busy] – T

ð E[idle] must equal the expected time backing off,
W/2σ,

where σ is the slot width
ð Solve for W!

Ilenia Tinnirello

Channel Access Rate (1)

!  If CW is fixed, assume that consecutive channel accesses
performed by the tagged station are renewal instants

! Let s_k the allocation rates for each station k (in terms of
channel occupancy ratio)

!  If I is the time interval between consecutive channel
accesses in slots and T the packet/ACK duration in slots,
the allocated rate for the tagged station is
" T slots/E[I]=s_i

 from which we can obtain the desired E[I]*

STA i STA i

I

How to Experiment with a New MAC?

è Find a ‘programmable’ hardware
platform
ð SDR platforms have performance limits
ð FPGA platforms can be too complex
ð Commercial WiFi cards with open-source

driver/firmware (Atheros/Broadcom)

How to Experiment with a New MAC?

è Build your own testbed or use a
remote available testbed
ð CREW federated testbed!
ð Not only wireless platforms, but also advanced

programming interfaces
ð Availability of control tools for experiment set-up

and monitoring
ð Large-scale node deployment (about 200 nodes

available!)

Architecture
Fig. 5. Normalized airtime as a function of time.

!"*$*%&!&'

()&*!' *&'
, "/0"12'

%34%,3'!")("'7$29"12 '

,;<!+ !0! -'
'

!"*$**!@'
9&'

A31/''
0;;B490"12' CD'

!1'0;;B490"12'

%&!&'
EFE!'
*!@'9B04/('

1H,3(''
I24 J,K('
*B1 ,K('

9B04/'

Fig. 6. Software architecture for the implementation of airtime negotiation
and allocation schemes.

the convergence speed, only the statistical fluctuations of the
estimated parameters and relevant Wi values.

Fig. 5 shows the normalized airtime A/C measured when
the three nodes employ REACT with C ′ = 1 and s∗ = 0.26
compared to when the three nodes employ the standard DCF.
It is evident that under the standard DCF there are serious
problems of unfairness because node B can be prevented
from accessing the channel for long time intervals, while its
success probability is much higher than nodes A and C (i.e.,
its contention average window is smaller). We return to this
issue in §V.

IV. IMPLEMENTATION

We implemented an airtime negotiation protocol based on
the REACT scheme and the relevant tuning of the contention
windows for legacy commercial WiFi cards. Specifically, we
used Atheros cards for which the driver-level functionalities
are supported in the modules mac80211 and cfg80211 of the
operating system and in the chipset-specific adaptation module
called ath9k.

Figure 6 shows the software architecture used for our
implementation and the interactions between the software
modules, the node queues and the hardware NIC: the airtime
negotiation protocol, as well as the decisions on the tuning
of the contention window, have been implemented at the
application level, while the collection of the statistics has been
implemented by exploiting the chipset-specific functionalities
devised to monitor and configure the NIC and by exposing
the relevant interfaces in the mac80211 module. Statistics

collection has been implemented exactly as described for the
NS2 implementation.

More into details, we defined a control protocol for notify-
ing the airtime offers and claims of the nodes as an application
working on customized hello packets, winth an additional
payload field coding the REACT parameters. As shown in
the figure, the negotiation packets are enqueued as priority
frames (namely, in the VO access priority) and separated by
the data frames for improving the protocol responsiveness.
Indeed, data queues can be saturated when the airtime auction
ends up by reaching the capacity limit of the links; in these
conditions, negotiation packets enqueued in the same queue
could experience long transmissions delays, which may be
detrimental for the timely detection of traffic and topology
changes and even for the convergence of the negotiation
scheme.

A. Airtime negotiation protocol

The airtime negotiation protocol is based on broadcast hello
messages, in which each node notifies the airtime claim and
offer, as well as its presence (the IP address) and the conver-
gence of the negotiation (by means of the finished and closed
flags) to the neighbors. For simplifying the implementation,
all the protocol parameters (including the simple flags) have
been coded into a 1 byte field of the message. The message
transmissions are scheduled at fixed time intervals (that in our
experiments have been configured to 0.5s). The reception of
a message sent by a neighbor node triggers the update of the
protocol internal parameters. These parameters are organized
into a table (node table), in which each row codes the address
and the protocol parameters notified by each visible node.

After the convergence of the scheme, when all the neigh-
bors are satisfied, the protocol parameters are no more up-
dated unless a novel neighbor (i.e. a topology change) or
a novel application request (i.e. a load change) is revealed
by the negotiation protocol. In the current implementation,
the negotiation protocol exposes a configuration interface
which allows to specify the normalized application request
(REQUEST) and the maximum negotiable faction of chan-
nel time (MAX CAPACITY). Both the parameters are
expressed in the range [0, 1].

The main routines of the protocol, according to which
claims and offers are updated, are represented in the following
pseudo-code lists.

void update_claim() {
min_offer = MAX_CAPACITY;
bottlenecked=0;
// get minimum offer
min_offer = get_min_offer(node_table);

// set claim
claim=min(REQUEST, min_offer);
// check if all resources are allocated

for (i=0; i<N; i++) {
if (node_table[i].closed==1) {
bottlenecked=1;
break;

}

Simple Chain Topology

B C A

Under standard DCF:
-  When RTS frames sent by node B fail (because node C was

waiting its CTS), only node A considers the channel busy
for the whole NAV

-  Asymmetries on channel busy time imply heterogeneous
channel allocations and throughput

collisions on RTS collisions on RTS

RTS failure during
CTS timeout for node C!

1 Mbps 1.8 Mbps 2 Mbps

Normalized Airtime as a
function of Time

Fig. 5. Normalized airtime as a function of time.

!"*$*%&!&'

()&*!' *&'
, "/0"12'

%34%,3'!")("'7$29"12 '

,;<!+ !0! -'
'

!"*$**!@'
9&'

A31/''
0;;B490"12' CD'

!1'0;;B490"12'

%&!&'
EFE!'
*!@'9B04/('

1H,3(''
I24 J,K('
*B1 ,K('

9B04/'

Fig. 6. Software architecture for the implementation of airtime negotiation
and allocation schemes.

the convergence speed, only the statistical fluctuations of the
estimated parameters and relevant Wi values.

Fig. 5 shows the normalized airtime A/C measured when
the three nodes employ REACT with C ′ = 1 and s∗ = 0.26
compared to when the three nodes employ the standard DCF.
It is evident that under the standard DCF there are serious
problems of unfairness because node B can be prevented
from accessing the channel for long time intervals, while its
success probability is much higher than nodes A and C (i.e.,
its contention average window is smaller). We return to this
issue in §V.

IV. IMPLEMENTATION

We implemented an airtime negotiation protocol based on
the REACT scheme and the relevant tuning of the contention
windows for legacy commercial WiFi cards. Specifically, we
used Atheros cards for which the driver-level functionalities
are supported in the modules mac80211 and cfg80211 of the
operating system and in the chipset-specific adaptation module
called ath9k.

Figure 6 shows the software architecture used for our
implementation and the interactions between the software
modules, the node queues and the hardware NIC: the airtime
negotiation protocol, as well as the decisions on the tuning
of the contention window, have been implemented at the
application level, while the collection of the statistics has been
implemented by exploiting the chipset-specific functionalities
devised to monitor and configure the NIC and by exposing
the relevant interfaces in the mac80211 module. Statistics

collection has been implemented exactly as described for the
NS2 implementation.

More into details, we defined a control protocol for notify-
ing the airtime offers and claims of the nodes as an application
working on customized hello packets, winth an additional
payload field coding the REACT parameters. As shown in
the figure, the negotiation packets are enqueued as priority
frames (namely, in the VO access priority) and separated by
the data frames for improving the protocol responsiveness.
Indeed, data queues can be saturated when the airtime auction
ends up by reaching the capacity limit of the links; in these
conditions, negotiation packets enqueued in the same queue
could experience long transmissions delays, which may be
detrimental for the timely detection of traffic and topology
changes and even for the convergence of the negotiation
scheme.

A. Airtime negotiation protocol

The airtime negotiation protocol is based on broadcast hello
messages, in which each node notifies the airtime claim and
offer, as well as its presence (the IP address) and the conver-
gence of the negotiation (by means of the finished and closed
flags) to the neighbors. For simplifying the implementation,
all the protocol parameters (including the simple flags) have
been coded into a 1 byte field of the message. The message
transmissions are scheduled at fixed time intervals (that in our
experiments have been configured to 0.5s). The reception of
a message sent by a neighbor node triggers the update of the
protocol internal parameters. These parameters are organized
into a table (node table), in which each row codes the address
and the protocol parameters notified by each visible node.

After the convergence of the scheme, when all the neigh-
bors are satisfied, the protocol parameters are no more up-
dated unless a novel neighbor (i.e. a topology change) or
a novel application request (i.e. a load change) is revealed
by the negotiation protocol. In the current implementation,
the negotiation protocol exposes a configuration interface
which allows to specify the normalized application request
(REQUEST) and the maximum negotiable faction of chan-
nel time (MAX CAPACITY). Both the parameters are
expressed in the range [0, 1].

The main routines of the protocol, according to which
claims and offers are updated, are represented in the following
pseudo-code lists.

void update_claim() {
min_offer = MAX_CAPACITY;
bottlenecked=0;
// get minimum offer
min_offer = get_min_offer(node_table);

// set claim
claim=min(REQUEST, min_offer);
// check if all resources are allocated

for (i=0; i<N; i++) {
if (node_table[i].closed==1) {
bottlenecked=1;
break;

}

C D

B

A

F

E

Generalization

4Mbps
Starved!

2.5Mbps

1.3Mbps
0.8Mbps

collisions also on
DATA_B / CTS_D!

1.3Mbps

REACT under Dynamic Traffic

at 50 sec. all links
become saturated

node C and node F start
from 0.05 desired rate

node E starts from 0.5
desired rate

ai
r t

im
e

[%
]

REACT Benefits in Multi-hop
Contention-based Networks

è Avoid flow starvation
è Mitigate collision rates

ð RTS/CTS alone have limited effectiveness
ð Collisions may also occur on DATA frames with

severe resource consumption
è Provision temporal fairness
è Short-term access fairness

(reduced delay jitter)

Future Plans

è Improve and extend the MAC
programming interface

è From context-specific optimized
MAC to auto-programmable MAC!
ð Implementation of machine-learning mechanisms

based on meta-MAC
è Identify most relevant factors

affecting experimental results
ð Novel solutions for reducing the design space

Our thanks!

We are grateful to the GPO for
providing travel support to

encourage this collaboration!

