SDN Security

Matt Bishop, Brian Perry
University of California at Davis

Network Switches

- Conventional switch: closed system
 - Support manufacturer-specific control interfaces
 - Control, data planes embedded in them
 - Changes in protocols, services, etc. usually require replacing or updating switch
- SDN: decouple control, data planes
 - Control plane controlled by a centralized controller on a computer (PC, for example)
 - Can program switch via controller
 - Easy to propagate changes in protocols, services, etc.

What Does This Mean?

Traditional set-up:

Security

- Trust, maintenance, resilient design, etc.
 common to both
- Authentication, authorization in SDN network more complicated
 - As commands and changes come on the fly, need to be sure these come from an authorized source
 - Can have dynamic policy for handling flows
 - "Apps" can perform additional security functions

Security Using the Switch

- Switch provides, assists security mechanisms
 - OpenFlow Random Host Mutation
 - Provide data for anomaly-based intrusion detection (more accurate than ISP-driven IDS)
 - Enforce dynamic access control policies based on flow-level information
 - Various security applications
 - Edge-based authentication gateways
 - Security application development frameworks

Security of the Switch

- Software
 - Verify
 - Various groups doing this with OpenFlow; not so much with others
 - Check for misconfigurations within a single flow table
 - Implement a security enforcement kernel
 - Lots of control/data plane interactions can disrupt operations
- Link to controller(?)
 - Ensure connection to controller is secured (TLS)
 - Disable passive listening (require authentication)

Our Approach

- Controller is a ordinary computer with all the vulnerabilities of an ordinary computer
 - So, attack that
 - Once in control of the controller, have fun!
- Also applies if we can impersonate the controller
 - Here's where the listener port comes into play
- This also considers misconfigurations downloaded from the controller
 - Must assume humans are fallible

Consequences

• Confidentiality, integrity compromise

GEC 22, March 24th, 2015

Key Points

- You can gain security with SDN, but you can also lose security (and vice versa)
- Security problems with SDN can wreak havoc on networks that depend on them
 - Like GENI
- Introducing powerful technology also introduces the risk of that power being used against you
 - And the threats may not come from where you expect!

Conclusion

- Security of the switch is important
- Security of whatever can control the switch even more so
 - Most computers vulnerable to attack
 - Best to use dedicated, stripped-down system as controller
 - If you can isolate it, so much the better

Thanks to ...

- Abhishek Gupta
- Saadet Sedef Savas
- Steven Templeton

Funded by the GENI Projects Office through Contract #950012166, Prime Sponsor (NSF) Award CNS-1344668

About Me

Matt Bishop
Computer Security Laboratory
Department of Computer Science
University of California at Davis
1 Shields Ave.
Davis, CA 95616-8562 USA

phone: +1 (530) 752-8060

email: bishop@ucdavis.edu

web: http://seclab.cs.ucdavis.edu/~bishop

