Programming OpenFlow Resources

http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/OpenFlowOVS
<20150306>

Intro to OpenFlow Tutorial

Overview:

This is a simple OpenFlow tutorial that will guide you through the writing of simple OpenFlow
controllers to showcase some of the OpenFlow capabilities. We are going to write three different
controllers:

1. Write a controller that will duplicate all the traffic of the OpenFlow switch out a specific
port

2. TCP Port Forward controller. Divert all traffic destined to host A on TCP port X to TCP
port Y

3. Proxy Controller. Write a controller that will divert all traffic destined to host A, TCP port
X to host B, TCP port Y

In this tutorial we have a choice of using an OpenFlow Software Switch, Open vSwitch
(OVS), or using an OpenFlow-Capable Hardware Switch. The general topology is as pictured
below. In general, the controller just needs to have a public IP address, so that it can exchange
messages with the OpenFlow switch. The controller for the switch can run anywhere in the
Internet. For this tutorial we are going to use a POX based controller, which is just one
example of many controller frameworks.

Controller

Public
Internet -

Openflow

/ — \
Host1 / Host3

Host2

Prerequisites:

e A GENI account, if you don't have one sign up!
e Familiarity with how to reserve GENI resources with any of the GENI Tools (GENI
Experimenter Portal, Omni, Flack). If you don't know you can take any of the tutorials:
o Reserving resources using Flack tutorial
o Reserving resources using Omni tutorial
e Familiarity with logging in to GENI compute resources.
e Basic understanding of OpenFlow. If you are doing this tutorial at home, flip through the
tutorial's slides
e Familiarity with the Unix Command line
e Familiarity with the python programming language. We are going to use the POX
controller, which is just one example of many controller frameworks, and POX is written in
python.

Tools:

e Open vSwitch. OVS will be be installed. Installation was completed as described here.
e POX controller. POX controller is installed as part of the resource reservation.

Where to get help:

o If you need help with GENI, email help@geni.net
e If you have questions about OpenFlow, OVS, Pox you can subscribe to openflow-discuss
or any of the other mailing lists listed.

Resources:

e |earn more about OpenFlow
e POX wiki
e Learn more about OVS

Tutorial Instructions

o~ e Part I: Design/Setup
o Step 1: Reserve Resources
= OpenFlow using Open vSwitch (OVS): Reserve
topology in one rack [Recommended]
Design/Setup = OpenFlow using a Hardware Switch: Reserve topology

in one rack using the HW OF switch
o Step 2: Configure and Initialize Services

v
I

e Part II: Execute

Execute o Step 3: Execute Experiment
% e Part III: Finish
o Step 4: Teardown Experiment
Finish
Attachments

e IntroToOpenFlow_140123.pptx (2.6 MB) - added by sedwards@bbn.com 13 months ago.
“Intro To Openflow slides”

Intro to OpenFlow Tutorial (OVS)

pEp e

Execute Finish

Step 1. Obtain [wiki:GENIExperimenter/Tutorials/OpenFlowOVS Intro to OpenFlow Tutorial ...

resources Step 1. Obtain resources
Step 2. Configure and Initialize
This tutorial can use 2a. Configure the Software Switch (OVS Window)
compute resources from 2c. Point your switch to a controller

standalone VS secure mode
Prev: Introduction
Next: Execute

any InstaGENI rack. For
a list of available
InstaGENI racks see the

GENI Production

Resources page. If doing this outside a tutorial, use Utah DDC InstaGENI. The experiment will
need:

e 1 Xen VM with a public IP to run an OpenFlow controller
e 1 Xen VM to be the OpenFlow switch
e 3 Xen VMs as hosts

controller

T

A

OpenFlow
101010/ _ Software | 101010124

Switch
(ovs)
Host1 /m 10.1.0/24

Host3
10.10.1.1/24 10.10.1.3/24

10.10.1.2/24
Host2

Legend

\
' controller|
i Xen VM Xen VM
Slice
\

In this tutorial we are going to use Open vSwitch (OVS) as an OpenFlow switch connected to
three hosts. OVS is a software switch running on a compute resource. The other three hosts can
only communicate through the OVS switch.

If you are attending a Tutorial, the resources might have been reserved for you, check with
your instructor and skip this step. You can use any reservation tool you want to reserve this
topology. We will need two slices for this tutorial:

e A slice with a single VM that runs your OpenFlow controller
e A slice with your compute resources including a VM with OVS installed.

To reserve resources use your favorite resource reservation tool (Omni, Portal, jFed):

1. In your slice that will run the OpenFlow controller: Reserve a VM running the controller
using the request RSpec http://www.gpolab.bbn.com/exp/OpenFlowOVS
/pox-controller.rspec. This RSpec is available in the Portal and is called XEN VM POX Ctrl

2. In the slice that will run your hosts: Reserve the topology using the request rspec

http://www.gpolab.bbn.com/experiment-support/OpenFlowOVS/openflowovs-
all-xen.rspec.xml. This RSpec is available in the Portal and is called OpenFlow OVS all
XEN

Step 2. Configure and Initialize

Although OVS is installed and initialized on the host that is meant to act as a software switch, it
has not been configured yet. There are two main things that need to be configured: (1)
configure your software switch with the interfaces as ports and (2) point the switch to an
OpenFlow controller.

In order to configure the OVS switch, we first login to the host that will be used as an OpenFlow
switch.

Depending on which tool and OS you are using there is a slightly different process for logging
in. If you don't know how to SSH to your reserved hosts learn how to login.

2a. Configure the Software Switch (OVS Window)

Now that you are logged in, we need first to configure OVS. To save time in this tutorial, we
have already started OVS and we have added an Ethernet bridge that will act as our software
switch. Try the following to show the configured bridge:

sudo ovs-vsctl list-br

You should see only one bridge br0. Now we need to add the interfaces to this bridge that will
act as the ports of the software switch.

1. List all the interfaces of the node
O ifconfig

Write down the interface names that correspond to the connections to
your hosts. This information will be needed for one of the exercises.
The correspondence is:

o Interface with IP "10.10.1.11" to hostl - ethX

o Interface with IP "10.10.1.12" to host2 - ethY

o Interface with IP "10.10.1.13" to host3 - ethZ

¢ Be careful not to bring down eth0. This is the control interface, if you bring that interface
down you won't be able to login to your host. For all interfaces other than eth0 and 10,
remove the IP from the interfaces (your interface names may vary):

® sudo ifconfig ethX 0
® sudo ifconfig ethY 0

® sudo ifconfig ethZ 0

e Add all the data interfaces to your switch (bridge):Be careful not to add interface eth0. This
is the control interface. The other three interfaces are your data interfaces. (Use the same
interfaces as you used in the previous step.)

® sudo ovs-vsctl add-port br0 ethX
® sudo ovs-vsctl add-port br0 ethY

® sudo ovs-vsctl add-port br0 ethz

Link encap:Ethernet HWaddr 02:50:52:0a:da:fe

inet6 addr: fe80::50:52ff:fel@a:dafe/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:14 errors:® dropped:® overruns:® frame:0
TX packets:14 errors:@ dropped:@ overruns:@ carrier:0
collisions:® txqueuelen:1000

RX bytes:800 (800.0 B) TX bytes:1456 (1.4 KB)
Interrupt:26

Link encap:Ethernet HWaddr 02:2e:b8:9d:bc:3e

inet6 addr: fe80::2e:b8ff:fe9d:bc3e/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:14 errors:@ dropped:® overruns:® frame:@
TX packets:15 errors:@ dropped:@ overruns:@ carrier:0
collisions:® txqueuelen:1000

RX bytes:800 (800.0 B) TX bytes:1534 (1.5 KB)
Interrupt:27

Link encap:Ethernet HWaddr 02:0d:b7:84:95:92

inet6 addr: fe80::d:b7ff:fe84:9592/64 Scope: k

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:14 errors:@ dropped:@® overruns:® frame:0
TX packets:16 errors:® dropped:® overruns:® carrier:9
collisions:@ txqueuelen:1000

RX bytes:800 (800.0 B) TX bytes:1644 (1.6 KB)
Interrupt:28

Congratulations! You have configured your software switch. To verify the three ports configured
run:

sudo ovs-vsctl list-ports br0

2c. Point your switch to a controller

In the controller window, find the control interface IP of your controller, use ifconfig and note
down the IP address of etho.

An OpenFlow switch will not forward any packet unless instructed by a controller. Basically the
forwarding table is empty, until an external controller inserts forwarding rules. The OpenFlow
controller communicates with the switch over the control network and it can be anywhere in the
Internet as long as it is reachable by the OVS host.

In order to point our software OpenFlow switch to the controller, in the ovs window, run:

sudo ovs-vsctl set-controller br0 tcp:<controller ip>:6633

standalone vs secure mode

The OpenFlow controller is responsible for setting up all flows on the switch, which means that
when the controller is not running there should be no packet switching at all. Depending on the
setup of your network, such a behavior might not be desired. It might be best that when the
controller is down, the switch should default back to being a learning layer 2 switch. In other
circumstances however this might be undesirable. In OVS this is a tunable parameter, called
fail-safe-mode which can be set to the following parameters:

e standalone [default]: in this case OVS will take responsibility for forwarding the packets
if the controller fails

e secure: in this case only the controller is responsible for forwarding packets, and if the
controller is down all packets are dropped.

In OVS when the parameter is not set it falls back to the standalone mode. For the purpose of
this tutorial we will set the fail-safe-mode to secure, since we want to be the ones controlling
the forwarding. Run:

sudo ovs-vsctl set-fail-mode br0 secure
You can verify your OVS settings by issuing the following:

sudo ovs-vsctl show

Prev: Introduction

Next: Execute

Intro to OpenFlow Tutorial

f
Design/Setup _Execute Finish
Step 3. Execute Intro to OpenFlow Tutorial
Experiment Step 3. Execute Experiment
3a. Login to your hosts
Now that the switch 3b. Use a Learning Switch Controller
is up and running we Soft vs Hard Tir.n.eouts
Useful Tips for writing your controller
are ready to start 3 .
. c. Debugging your Controller
working on the i. Print messages
controller. For this ii. Check the status in the switch
tutorial we are going iii. Use Wireshark to see the OpenFlow messages
to use the POX 3d. Run a traffic duplication controller
controller. The 3d. Run a port forward Controller
. 3e. Run a Server Proxy Controller
software is already 4. Moving to a Hardware Switch
installed in the [wiki:GENIExperimenter/Tutorials/OpenFlowOVS/DesignSetup Prev: Design and ...
controller host for [wiki:GENIExperimenter/Tutorials/OpenFlowOVS/HW/DesignSetup Prev: Design ...

running POX and can Next: Finish

also be found here.
3a. Login to your hosts
To start our experiment we need to ssh all of our hosts.
To get ready for the tutorial you will need to have the following windows open:

one window with ssh into the controller
four windows with ssh into OVS

one window with ssh into hostl

two windows with ssh into host2

one window with ssh into host3

Depending on which tool and OS you are using there is a slightly different process for logging
in. If you don't know how to SSH to your reserved hosts learn how to login. Once you have
logged in follow the rest of the instructions.

3b. Use a Learning Switch Controller

In this example we are going to run a very simple learning switch controller to forward traffic
between hostl and host2.

1. First start a ping from host1 to host2, which should timeout, since there is no controller
running.

ping host2 -c 10

2. We have installed the POX controller under /tmp/pox on the controller host. POX comes
with a set of example modules that you can use out of the box. One of the modules is a
learning switch. Start the learning switch controller which is already available by running

the following two commands:

N

& "I2" below uses the letter |

as in level and is not the number one. And you should

,10/'69 wait for the "'INFO ... connected"' line to ensure that the switch and the controller

are communicating.

cd /tmp/pox
./pox.py --verbose forwarding.l2 learning

The output should look like this:

POX 0.1.0 (betta) / Copyright 2011-2013 James McCauley, et al.

DEBUG:core:POX 0.1.0 (betta) going up...
DEBUG:core:Running on CPython (2.7.3/Apr 20 2012 22:39:59)

DEBUG:core:Platform is Linux-3.2.0-56-generic-x86_64-with-Ubuntu-12.04-prec

INFO:core:POX 0.1.0 (betta) is up.
DEBUG:openflow.of 0l:Listening on 0.0.0.0:6633
INFO:openflow.of 01:[9e-38-3e-8d-42-42 1] connected

DEBUG: forwarding.1l2 learning:Connection [9e-38-3e-8d-42-42 1]

In the event that you need to move the port of your controller, this is the command -

sudo ./pox.py --verbose openflow.of 01 --port=443 forwarding.l2 learning

Do not forget to tell the ovs switch that the controller will be listening on this new

port, i.e change 6633 to 443 in Step 2c.

3. In the terminal of host1, ping host2:

[experimenter@hostl ~]$ ping host2

PING host2-lanl (10.10.1.2) 56(84) bytes of data.

From hostl-lan0 (10.10.1.1) icmp seqg=2 Destination Host
From hostl-lan0 (10.10.1.1) icmp seq=3 Destination Host
From hostl-lan0 (10.10.1.1) icmp seqg=4 Destination Host
64 bytes from host2-lanl (10.10.1.2): icmp reqg=5 ttl=64
64 bytes from host2-lanl (10.10.1.2): icmp _reqg=6 ttl=64
64 bytes from host2-lanl (10.10.1.2): icmp_req=7 ttl=64
64 bytes from host2-lanl (10.10.1.2): icmp_req=8 ttl=64
64 bytes from host2-lanl (10.10.1.2): icmp_req=9 ttl=64

Now the ping should work.

Unreachable
Unreachable
Unreachable
time=23.9 ms
time=0.717 ms
time=0.654 ms
time=0.723 ms
time=0.596 ms

4. If you are using OVS, go back to your OVS host and take a look at the print outs. You
should see that your controller installed flows based on the mac addresses of your

packets.

o
,10/1’9 There is no way to get this information from the OpenFlow-capable hardware switch.

5. If you are using OVS, to see the flow table entries on your OVS switch:

sudo ovs-ofctl dump-flows br0

You should see at least two table entries: One for ICMP Echo (icmp_type=8) messages
from hostl to host2 and one for ICMP Echo Reply (icmp_type=0) messages from host2 to
hostl. You may also see flow entries for arp packets.

6. To see messages go between your switch and your controller, open a new ssh window to
your controller node and run tcpdump on the etho interface and on the tcp port that your
controller is listening on usually 6633. (You can also run tepdump on the ovs control
interface if you desire. However, when using the hardware switch, you can only do the
tcpdump on your controller host.)

sudo tcpdump -i ethO tcp port 6633

You will see (1) periodic keepalive messages being exchanged by the switch and the
controller, (2) messages from the switch to the controller (e.g. when there is a table
miss) and an ICMP Echo message in, and (3) messages from the controller to the switch
(e.g. to install new flow entries).

7. Kill your POX controller by pressing ctrl-cC:

DEBUG: forwarding.1l2 learning:installing flow for 02:c7:e8:a7:40:65.1 -
INFO:core:Going down...

INFO:openflow.of 0l:[3a-51-al-ab-c3-43 1] disconnected

INFO:core:Down.

8. Notice what happens to your ping on host1.
9. If you are using OVS, check the flow table entries on your switch:

sudo ovs-ofctl dump-flows br0

Since you set your switch to "secure" mode, i.e. don't forward packets if the controller
fails, you will not see flow table entries. If you see flow table entries, try again after 10
seconds to give the entries time to expire.

Soft vs Hard Timeouts

All rules on the switch have two different timeouts:

e Soft Timeout: This determines for how long the flow will remain in the forwarding table
of the switch if there are no packets received that match the specific flow. As long as
packets from that flow are received the flow remains on the flow table.

e Hard Timeout: This determines the total time that a flow will remain at the forwarding
table, independent of whether packets that match the flow are received; i.e. the flow will
be removed after the hard timeout expires.

Can you tell now why there were packets flowing even after you killed your controller?
Useful Tips for writing your controller

In order to make this first experience of writing a controller easier, we wrote some helpful
functions that will abstract some of the particularities of POX away. These functions are located
in /tmp/pox/ext/utils.py, SO while you write your controller consult this file for details.

Functions that are implemented include:

packetIsIP : Test if the packet is IP

packetIsARP : Test if the packet is ARP

packetIsRequestARP : Test if this is an ARP Request packet
packetIsReplyARP : Test if this is an ARP Reply packet
packetArpDstlp : Test what is the destination IP in an ARP packet
packetArpSrclp : Test what is the sources IP in an ARP packet
packetIsTCP : Test if a packet is TCP

packetDstlp : Test the destination IP of a packet

packetSrclp : Test the source IP of a packet

packetDstTCPPort : Test the destination TCP port of a packet
packetSrcTCPPort : Test the source TCP port of a packet
createOFAction : Create one OpenFlow action

getFullMatch : get the full match out of a packet

createFlowMod : create a flow mod

createArpRequest : Create an Arp Request for a different destination IP
createArpReply : Create an Arp Reply for a different source IP

3c. Debugging your Controller
While you are developing your controller, some useful debugging tools are:

i. Print messages

Run your controller in verbose mode (add --verbose) and add print messages at various places
to see what your controller is seeing.

ii. Check the status in the switch

If you are using an OVS switch, you can dump information from your switch. For example, to
dump the flows:

sudo ovs-ofctl dump-flows bro0
Two other useful commands show you the status of your switch:

sudo ovs-vsctl show
sudo ovs-ofctl show bro0

iii. Use Wireshark to see the OpenFlow messages

Many times it is useful to see the OpenFlow messages being exchanged between your controller
and the switch. This will tell you whether the messages that are created by your controller are

correct and will allow you to see the details of any errors you might be seeing from the switch.
If you are using OVS then you can use wireshark on both ends of the connection, in hardware
switches you have to rely only on the controller view.

The controller host and OVS has wireshark installed, including the openflow dissector. For more
information on wireshark you can take a look at the wireshark wiki.

Here we have a simple case of how to use the OpenFlow dissector for wireshark.

If you are on a Linux friendly machine (this includes MACs) open a terminal and ssh to your
controller machine using the -Y command line argument, i.e.

ssh -Y <username>@<controller>

Assuming that the public IP address on the controller is ethO, run wireshark by typing:

sudo wireshark -i ethO&

When the wireshark window pops up, you might still have to choose ethO for a live capture. And
you will want to use a filter to cut down on the chatter in the wireshark window. One such filter
might be just seeing what shows up on port 6633. To do that type tcp.port eq 6633 in the filter
window, assuming that 6633 is the port that the controller is listening on. And once you have

lines, you can choose one of the lines and choose "Decode as" and choose the OFP protocol.

3d. Run a traffic duplication controller

In the above example we ran a very simple learning switch controller. The power of OpenFlow
comes from the fact that you can decide to forward the packet anyway you want based on the
supported OpenFlow actions. A very simple but powerful modification you can do, is to duplicate
all the traffic of the switch out a specific port. This is very useful for application and network
analysis. You can imagine that at the port where you duplicate traffic you connect a device that
does analysis. For this tutorial we are going to verify the duplication by doing tcpdump on two
ports on the OVS switch.

1. Use the interfaces that are connected to host2 and host3.

o Software Switch (OVS): If you have not noted them down you can use the manifest
and the MAC address of the interfaces (ovs:ifl and ovs:if2) to figure this out. But
you should have noted down the interfaces in Section 2 when you were configuring
the software switch. Run tcpdump on these interfaces; one in each of the two ovs
terminals you opened. This will allow you to see all traffic going out the interfaces.

o Hardware Switch: Refer to this Section to figure out ports: UsefulTips. If you are
using a hardware switch, you may not see the traffic on host3, but if you observe
your controller output, you will notice that flows are being installed for forwarding
to host2 and host3.

To see that duplication is happening, on the ovs host, run:

sudo tcpdump -i <data_ interface name> [data_interface to host2]
sudo tcpdump -i <data_ interface name> [data_interface to host3]

You should see traffic from hostl to host2 showing up in the tcpdump window for host3. As a
comparison, you will notice that no traffic shows up in that window when the controller is
running the learning switch.

2. In the controller host directory /tmp/pox/ext you should see two files:

i. myDuplicateTraffic.py : This is the file that has instructions about how to complete the
missing information. Go ahead and try to implement your first controller.

ii. DuplicateTraffic.py : This has the actual solution. You can just run this if you don't want to
bother with writing a controller.

3. Run your newly written controller on the <data_interface_name> that corresponds to
OVS:if2 (which is connected to host3):

cd /tmp/pox
./pox.py --verbose myDuplicateTraffic --duplicate port=?

4. To test it go to the terminal of hostl and try to ping host2:

ping 10.10.1.2

If your controller is working, your packets will register in both terminals running tcpdump.

5. Stop the POX controller:

DEBUG:myDuplicateTraffic:Got a packet : [02:fl:ae:bb:e3:a8>02:c7:e8:a’
DEBUG:SimpleL2Learning:installing flow for 02:fl:ae:bb:e3:a8.2 -> 02:c¢

INFO:core:Going down...

INFO:openflow.of 0l:[3a-51-al-ab-c3-43 1] disconnected
INFO:core:Down.

3d. Run a port forward Controller

Now let's do a slightly more complicated controller. OpenFlow gives you the power to overwrite
fields of your packets at the switch, for example the TCP source or destination port and do port
forwarding. You can have clients trying to contact a server at port 5000, and the OpenFlow
switch can redirect your traffic to a service listening on port 6000.

1. Under the /tmp/pox/ext directory there are two files PortForwarding.py and
myPortForwarding.py that are similar like the previous exercise. Both of these controller
are configured by a configuration file at ext/port_ forward.config. Use
myPortForwarding.py to write your own port forwarding controller.

2. To test your controller we are going to use netcat. Go to the two terminals of host2. In
one terminal run:

nc -1 5000
and in the other terminal run

nc -1 6000

3. Now, start the simple layer 2 forwarding controller. We are doing this to see what
happens with a simple controller.

cd /tmp/pox

./pox.py --verbose forwarding.l2 learning

4. Go to the terminal of hostl and connect to host2 at port 5000:

nc 10.10.1.2 5000

5. Type something and you should see it at the the terminal of host2 at port 5000.

6. Now, stop the simple layer 2 forwarding controller:
DEBUG: forwarding.1l2 learning:installing flow for 02:d4:15:ed:07:4e.3 -
INFO:core:Going down...

INFO:openflow.of 01:[36-63-8b-d7-16-4b 1] disconnected
INFO:core:Down.

7. And start your port forwarding controller:

./pox.py --verbose myPortForwarding

8. Repeat the netcat scenario described above. Now, your text should appear on the other
terminal of host2 which is listening to port 6000.

9. Stop your port forwarding controller:
DEBUG:myPortForwarding:Got a packet : [02:aa:a3:e8:6c:db>33:33:ff:e8:¢
INFO:core:Going down...

INFO:openflow.of 01:[36-63-8b-d7-16-4b 1] disconnected
INFO:core:Down.

3e. Run a Server Proxy Controller

As our last exercise, instead of diverting the traffic to a different server running on the same
host, we will divert the traffic to a server running on a different host and on a different port.

1. Under the /tmp/pox/ext/ directory there are two files Proxy.py and myProxy.py that are
similar like the previous exercise. Both of these controllers are configured by the
configuration file proxy.config. Use myProxy.py to write your own proxy controller.

2. On the terminal of host3 run a netcat server:

nc -1 7000

3. On your controller host, open the /tmp/pox/ext/myProxy.py file, and edit it to implement
a controller that will divert traffic destined for host2 to host3. Before you start
implementing think about what are the side effects of diverting traffic to a different host.

o Is it enough to just change the IP address?
o Is it enough to just modify the TCP packets?

If you want to see the solution, it's available in file /tmp/pox
/ext/Proxy.py file.

4. To test your proxy controller run:

cd /tmp/pox
./pox.py --verbose myProxy

5. Go back to the terminal of host1 and try to connect netcat to host2 port 5000

nc 10.10.1.2 5000

6. If your controller works correctly, you should see your text showing up on the terminal of
host3.

4. Moving to a Hardware Switch
To try your controller with a GENI Hardware OpenFlow switch:

e Delete resources in your slice with the compute resources. Do not delete resources in
your slice with the controller.
e Follow the instructions at OpenFlow Design and Setup for Hardware Switch

If you do not want to do the Hardware OpenFlow portion of the tutorial, proceed to Finish

Prev: Design and Setup for OVS
Prev: Design and Setup for Hardware Switch
Next: Finish

#!/usr/bin/python

#

Copyright (c) 2013 Raytheon BBN Technologies

#

Permission is hereby granted, free of charge, to any person
obtaining

a copy of this software and/or hardware specification (the "Work")
to

deal in the Work without restriction, including without limitation
the

rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Work, and to permit persons to whom the
Work

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Work.

THE WORK IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE WORK OR THE USE OR OTHER DEALINGS
IN THE WORK.

HHHHBFEHRFHRBFHRRFHHR

#File: /tmp/pox/ext/utils.py
from pox.core import core

import ConfigParser
import os
import sys

from pox.lib.packet.tcp import tcp

from pox.lib.packet.arp import arp

from pox.lib.packet.ipv4 import ipv4

from pox.lib.packet.ethernet import ethernet

from pox.lib.packet.ethernet import ETHER_BROADCAST

import pox.openflow. libopenflow_01 as of
from pox.lib.addresses import IPAddr

def getOpenFlowPort(connection, port_name)
phy_port = connection.ports[port_name]
if phy_port is not None:

return phy_port.port_no
return -1

def readConfigFile(filename, logger)
config = None
logger.debug("Looking for configuration file %s" % filename)
filename = os.path.expanduser(filename)
if not os.path.exists(filename):
logger.error("Configuration file %s does not exist! Exit!" %
(filename))
sys.exit(-1)
logger.debug("Using configuration file %s" % filename)

confparser = ConfigParser.RawConfigParser()
try:
confparser.read(filename)
except ConfigParser.Error as exc:
logger.warning("Config file %s could not be parsed: %s"
% (filename, str(exc)))

Create a dictionary from the configuration
- each section is a key in the dictionary that it's value
is a dictionary with (key, value) pairs of configuration
parameters
config = {}
for sec in confparser.sections():

config[sec] = {}

for (key,val) in confparser.items(sec):

config[sec] [key] = val

logger.debug(config)
return config

def packetIsIP(packet, logger)
if isinstance(packet, ethernet):
return isinstance(packet.next, ipv4)
return False

def packetIsARP(packet, logger)
if isinstance(packet, ethernet):
return isinstance(packet.next, arp)
return False

def packetIsRequestARP(packet, logger)
if packetIsARP(packet, logger)
if packet.next.opcode == arp.REQUEST:
return True
return False

def packetIsReplyARP(packet, logger)

if packetIsARP(packet, logger)
if packet.next.opcode == arp.REPLY:
return True
return False

def packetArpDstIp(packet, dstip, logger):
if packetIsARP(packet, logger)
if packet.next.protodst == dstip:
return True
return False

def packetArpSrcIp(packet, srcip, logger):
if packetIsARP(packet, logger)
if packet.next.protosrc == srcip:
return True
return False

def packetIsTCP(packet, logger)
if packetIsIP(packet, logger):
return isinstance(packet.next.next, tcp)
return False

def packetDstIp(packet, ipaddr, logger)
if packetIsIP(packet, logger):
if not cmp(packet.next.dstip, ipaddr):
return True
return False

def packetSrcIp(packet, ipaddr, logger)
if packetIsIP(packet, logger):
if not cmp(packet.next.srcip, ipaddr):
return True
return False

def packetDstTCPPort(packet, tcpport, logger)
if packetIsTCP(packet, logger):
dsttcpportstr = packet.next.next.dstport
if dsttcpportstr == tcpport :
return True
return False

def packetSrcTCPPort(packet, tcpport, logger)
if packetIsTCP(packet, logger):
srctcpportstr = packet.next.next.srcport
if srctcpportstr == tcpport :
return True
return False

def createOFAction(action_type, arg, logger)

if action_type == of.OFPAT_OUTPUT :
XXX Check if arg is a list
logger.debug("Creating output action to %d" % arg)

return of.ofp_action_output(port = arg)
if action_type == of.OFPAT_SET_DL_SRC :
return of.ofp_action_dl_addr.set_src(arg)
if action_type == of.OFPAT_SET_DL_DST :
return of.ofp_action_dl_addr.set_dst(arg)
if action_type == of.OFPAT_SET_NW_SRC :
return of.ofp_action_nw_addr.set_src(arg)
if action_type == of.OFPAT_SET_NW_DST :
return of.ofp_action_nw_addr.set_dst(arg)
if action_type == of.OFPAT_SET_TP_SRC :
return of.ofp_action_tp_port.set_src(arg)
if action_type == of.OFPAT_SET_TP_DST :
return of.ofp_action_tp_port.set_dst(arg)

logger.warn("Type %d not supported" % action_type)
return None

def getFullWMatch(packet, inport)
return of.ofp_match.from_packet(packet, inport)

def createFlowMod(match, actions, hard_timeout, idle_timeout,
buffid=None) :
msg = of.ofp_flow_mod(command=of.0FPFC_ADD,
idle_timeout=idle_timeout,
hard_timeout=hard_timeout,
buffer_id=buffid,
actions=actions,
match=match)
return msg

def createArpRequest(packet, ip, logger):
if not packetIsARP(packet, logger):
logger.warn("Packet is not ARP")
return
origarp = packet.next
arppkt = arp()
arppkt.hwsrc
arppkt.hwdst
arppkt.hwlen
arppkt.opcode
arppkt.protolen
arppkt.protosrc
arppkt.protodst

origarp.hwsrc
origarp.hwdst
origarp.hwlen
arp.REQUEST
origarp.protolen
origarp.protosrc
IPAddr(ip)

pkt = ethernet()
pkt.set_payload(arppkt)
pkt.type = ethernet.ARP_TYPE
pkt.src = arppkt.hwsrc
pkt.dst = ETHER_BROADCAST
return pkt

def createArpReply(packet, ip, logger):

if not packetIsARP(packet, logger):
logger.warn("Packet is not ARP")
return

origarp = packet.next

arppkt = arp()

arppkt.hwsrc

arppkt.hwdst

arppkt.hwlen

origarp.hwsrc
origarp.hwdst
origarp.hwlen

arppkt.opcode arp.REPLY
arppkt.protolen origarp.protolen
arppkt.protosrc IPAddr(ip)

arppkt.protodst
pkt = ethernet()
pkt.set_payload(arppkt)
pkt.type = ethernet.ARP_TYPE
pkt.src = arppkt.hwsrc
pkt.dst = arppkt.hwdst
return pkt

origarp.protodst

Intro to OpenFlow Tutorial

1

Design/Setup

Step 4. Teardown Experiment

After you are done with this experiment release your resources. In the GENI Portal select the slice click on the
"Delete Resources" button:

GENI Slice: OVS-Tutorial

Slice Actions Renew

Project does not have an expiration date
Slice expires on 2014-03-19 13:26:15 Z

| Add Resources | | Resource Status | | Details e (O slice only until
(®) slice & all resources

2014-03-19 | Renew |

Tools Ops Mgmt

.:'
L;-ﬁ | GENI Desktop | | LabWiki | | Use omni | | Disable Slice || Shutdown Slice |
Launch Flack

If you have used other tools to run this experiment than release resources as described in the Prerequisites for
Tutorials on reservation tools pages.

Now you can start designing and running your own experiments!

Prev: Execute

Introduction

