

VIRO-GENI: Deployment of a plug & play, scalable, robust virtual Id routing in GENI

Braulio Dumba, Guobao Sun, Hesham Mekky, Zhi-Li Zhang Department of Computer Science, University of Minnesota-Twin Cities, MN, 55455

This project is supported in part by a Raytheon/NSF subcontract 9500012169/CNS-1346688, the NSF grants CNS-1017092, CNS-1117536 and CRI-1305237, and the DTRA grant HDTRA1- 09-1-0050.

MOTIVATION

IP Known limitations:

- Poor support for mobility
- Need of careful and extensive network configurations
- VIRO-GENI project goal: to implement VIRO as a non-IP service in GENI using the SDN platform

VIRO: three main components

- Virtual Id space construction
- Routing tables computation
- Data forwarding using virtual Ids

CHALLENGES:

- OpenFlow protocol flexible forwarding behavior is still tied to the standard Ethernet/IP/TCP protocol task
- VIRO has its own "topology-aware" addressing and forwarding behavior, where forwarding is based on the destination vid and the forwarding directive

IMPLEMENTATION OF VIRO IN GENI

VIRO-GENI NODE VIRO Remote POX Management Plane VIRO Local POX Control Plane Open ySwitch OVS Daemon OVS Kernel VIRO-GENI Node

VIRO PACKET FORMAT

C) 3	2 4	8 8	0 96	5 11	2 14	14	ı
	DMAC		SMAC		VIRO Header		Ethernet Frame	
	DVID	DHost	SVID	SHost	VPID	FD	Ether Type	Payload

←L→**←**I→**←**I→

CONTROL PLANES

Management Plane: VIRO remote controller is responsible for the following tasks:

- topology discovery/maintenance (host/switch added/removed)
- Vid assignment
- ► ARP and DHCP Requests
- ▶ IP/VID Mapping (Global View)

Control Plane: VIRO local controllers are responsible for the following tasks:

- MAC/VID Mapping (Local View)
- Populate Routing Table
- Insert forwarding rules for the first packet of any flow

DATA PLANE

OVS Daemon:

- Translation between IP packets/VIRO packets (EtherType, Forwarding Directive)
- Insert rules for routing at Kernel

OVS Kernel:

- Translation between IP packets/VIRO packets (End-Host)
- Forwarding IP packets among local machines
- ► Forwarding VIRO packets

ADDRESS / VID RESOLUTION AND DATA FORWARDING IN

DEMO OF INITIAL PROTOTYPE

- Our goal is to show how VIRO handles host mobility.
- To pursue this goal, we carried out experiments in GENI using a network topology with 7 nodes
- The leaf nodes in the binary tree represent VIRO switches
- The color of the nodes represent GENI Aggregate Managers (AM)
- We attached a client host at node C and an Apache server at node G

DEMO SET-UP IN GENI

We use two GENI AMs (Wisconsin and Illinois), 7 XenVMs and 4 PCS in our experiment. EGRE tunnels were used to connect nodes at different GENI AMs.

Host Mobility Experiment After

VIRO topology-aware, structure virtual id (vid) space offers support for

Bucket Distance	Next hop	Gateway		
1	D	С		
2	В	С		
3	D	D		

Routing Table for **node C** (Round 3)

host mobility

Bucket Distance

A B
C B
A A
Routing Table for node B (Round 3)

- In this experiment the client at node C downloads a large image from the server at node G
- ▶ Before: Node C uses its level-3 gateway (node D) to communicate with the server

▶ After:

- The client is assigned a new vid, after moving to node **B**
- The server issues an ARP request to the remote controller to find the client new vid
- ► The client **TCP** connection is unaffected during this process

