
The Advanced Profile-Driven Testbed

Robert Ricci
June 23, 2014

A platform for sharing research
artifacts and environments

A facility for building testbeds
tailored to specific domains

A choice…

Role for Domain Experts

Infrastructure

Domain Experts

N
et

w
or

ki
ng

H
PC

D
at

ab
as

es

M
L

Vi
su

al
iz

at
io

n

Profiles:
Packaged

experiments

Packaged
testbeds

http://aptlab.net/p/tbres/nsdi14

It’s Just GENI*

*with some PGENI-specific features

Jacks

Profile= RSpec

GENI
Portal Emulab

Apt
Guests

Member Authorities

56 Gbps Ethernet/IB

Early Users

SMACK: Decoupling Source Language Details
from Verifier Implementations?

Zvonimir Rakamarić1 and Michael Emmi2

1 School of Computing, University of Utah, USA
zvonimir@cs.utah.edu

2 IMDEA Software Institute, Spain
michael.emmi@imdea.org

Abstract. A major obstacle to putting software verification research
into practice is the high cost of developing the infrastructure enabling
the application of verification algorithms to actual production code, in
all of its complexity. Handling an entire programming language is a huge
endeavor that few researchers are willing to undertake; even fewer could
invest the e↵ort to implement a verification algorithm for many source
languages. To decouple the implementations of verification algorithms
from the details of source languages, and enable rapid prototyping on
production code, we have developed SMACK. At its core, SMACK is a
translator from the LLVM intermediate representation (IR) into the Boo-
gie intermediate verification language (IVL). Sourcing LLVM exploits an
increasing number of compiler front ends, optimizations, and analyses.
Targeting Boogie exploits a canonical platform which simplifies the im-
plementation of algorithms for verification, model checking, and abstract
interpretation. Our initial experience in verifying C-language programs is
encouraging: SMACK is competitive in SV-COMP benchmarks, is able
to translate large programs (100 KLOC), and is being used in several
verification research prototypes.

1 Introduction

A major obstacle to putting software verification research into practice is the
high cost of developing the infrastructure enabling the application of verification
algorithms to actual production code, in all of its complexity. Each high-level
programming language brings a diverse assortment of statements and expressions
with varying semantics. Handling an entire language is a huge e↵ort which few
researchers are willing to undertake; even fewer could invest the e↵ort required
to implement their verification algorithms for multiple source languages.

To address this problem, we introduce SMACK: a translator from the LLVM
compiler’s popular intermediate representation (IR) [27,24] into the Boogie in-

termediate verification language (IVL) [19,26]. SMACK’s primary function is to
precisely and e�ciently translate the rich set of LLVM-IR features, including dy-
namic memory allocation and pointer arithmetic, to the comparatively-simple

? Partially supported by NSF award CCF 1346756.

Formal Software Verification

This is a reformatted version of the paper that appears in SIGCOMM’s proceedings

Using RDMA Efficiently for Key-Value Services

Anuj Kalia Michael Kaminsky† David G. Andersen
Carnegie Mellon University †Intel Labs

{akalia,dga}@cs.cmu.edu michael.e.kaminsky@intel.com

ABSTRACT

This paper describes the design and implementation of HERD,
a key-value system designed to make the best use of an
RDMA network. Unlike prior RDMA-based key-value sys-
tems, HERD focuses its design on reducing network round
trips while using efficient RDMA primitives; the result is sub-
stantially lower latency, and throughput that saturates modern,
commodity RDMA hardware.

HERD has two unconventional decisions: First, it does not
use RDMA reads, despite the allure of operations that bypass
the remote CPU entirely. Second, it uses a mix of RDMA
and messaging verbs, despite the conventional wisdom that
the messaging primitives are slow. A HERD client writes its
request into the server’s memory; the server computes the
reply. This design uses a single round trip for all requests and
supports up to 26 million key-value operations per second
with 5 µs average latency. Notably, for small key-value items,
our full system throughput is similar to native RDMA read
throughput and is over 2X higher than recent RDMA-based
key-value systems. We believe that HERD further serves as
an effective template for the construction of RDMA-based
datacenter services.

Keywords
RDMA; InfiniBand; RoCE; Key-Value Stores

1. INTRODUCTION

This paper explores a question that has important implications
for the design of modern clustered systems: What is the best
method for using RDMA features to support remote hash-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses. contact the
Owner/Author.
Copyright is held by the owner/author(s).
SIGCOMM’14, Aug 17-22 2014, Chicago, IL, USA
ACM 978-1-4503-2836-4/14/08.
http://dx.doi.org/10.1145/2619239.2626299

table access? To answer this question, we first evaluate the
performance that, with sufficient attention to engineering, can
be achieved by each of the RDMA communication primitives.
Using this understanding, we show how to use an unexpected
combination of methods and system architectures to achieve
the maximum performance possible on a high-performance
RDMA network.

Our work is motivated by the seeming contrast between
the fundamental time requirements for cross-node traffic vs.
CPU-to-memory lookups, and the designs that have recently
emerged that use multiple RDMA (remote direct memory ac-
cess) reads. On one hand, going between nodes takes roughly
1-3 µs, compared to 60-120 ns for a memory lookup, sug-
gesting that a multiple-RTT design as found in the recent
Pilaf [21] and FaRM [8] systems should be fundamentally
slower than a single-RTT design. But on the other hand, an
RDMA read bypasses many potential sources of overhead,
such as servicing interrupts and initiating control transfers,
which involve the host CPU. In this paper, we show that
there is a better path to taking advantage of RDMA to achieve
high-throughput, low-latency key-value storage.

A challenge for both our and prior work lies in the lack of
richness of RDMA operations. An RDMA operation can only
read or write a remote memory location. It is not possible
to do more sophisticated operations such as dereferencing
and following a pointer in remote memory. Recent work in
building key-value stores [21, 8] has focused exclusively on
using RDMA reads to traverse remote data structures, similar
to what would have been done had the structure been in local
memory. This approach invariably requires multiple round
trips across the network.

Consider an ideal RDMA read-based key-value store (or
cache) where each GET request requires only 1 small RDMA
read. Designing such a store is as hard as designing a hash-
table in which each GET request requires only one random
memory lookup. We instead provide a solution to a simpler
problem: we design a key-value cache that provides perfor-
mance similar to that of the ideal cache. However, our design
does not use RDMA reads at all.

In this paper, we present HERD, a key-value cache that
leverages RDMA features to deliver low latency and high

Infiniband Key/Value Store

HPC / MPI
Infiniband

Big Data Class

Hadoop
Ethernet

aptlab.net

