

Optical Service Chaining by Combining Optics, SDN, and NFV

Ming xia
Ericsson research, u.S.A.

Workshop on software defined optical networking
Geni conference 2014, davis, ca

Network Function Virtualization

- Network Function Virtualization
 - Middlebox services or network functions are realized in software running on generic hardware and in virtualized environments.
 - Motivated by CAPEX savings and faster time to market of new offerings and solutions.

Source: ETSI NFV Whitepaper 2012

Benefit

- CapEx/OpEx saving
- Shorter development cycles for new services
- Automation of NF configuration and management
- Support multi-tenancy of NF

• . .

End-To-End Path of Traffic Flow

Operator's Access Network with Legacy NFs (e.g. middleboxes)

Operator's DC/Cloud with virtualized network functions

Internet

Challenge in Data Center Networks

- Steering traffic across core network functions in data centers requires high efficiency and scalability
- How to efficiently handle ~10s of Gbps traffic steering?
- How to dynamically shape network infrastructure to support bulky traffic transmission?
- Data center network infrastructure and cloud manager needs to be interacted to optimizing networking and server resources

Source: A Scalable, Commodity Data Center Network Architecture

Scalability Issue – An Example

Core switch has a capacity of 40Gbps

f₁ and f₂ are 5 Gbps flows

f₁ needs to go through vNF₁ and vNF₂

f₂ needs to go through vNF₃ and vNF₄

 f_1 : S_1 -To R_1 -vN F_1 -To R_1 -S $_1$ -To R_2 -vN F_2 -To R_2 -S $_1$

 f_2 : S_1 -To R_3 -vN F_3 -To R_3 -S $_1$ -To R_4 -vN F_4 -To R_4 -S $_1$

Core switch has a capacity of 40Gbps

f₁ and f₂ are 10 Gbps flows

f₁ needs to go through vNF₁, vNF₂, and vNF₃

f₂ needs to go through vNF₄, vNF₅, and vNF₆

 $\begin{array}{l} f_1: \ S_1\text{-}\mathsf{ToR}_1\text{-}\mathsf{vNF}_1\text{-}\mathsf{ToR}_1\text{-}S_2\text{-}\mathsf{ToR}_2\text{-}\mathsf{vNF}_2\text{-}\mathsf{ToR}_2\text{-}S_2\text{-}\mathsf{ToR}_3\text{-}\mathsf{vNF}_3\text{-}\\ \mathsf{ToR}_3\text{-}S_1 \end{array}$

 $\begin{array}{l} f_2 \colon S_1 \text{-} \text{ToR}_4 \text{-} \text{vNF}_4 \text{-} \text{ToR}_4 \text{-} S_2 \text{-} \text{ToR}_5 \text{-} \text{vNF}_5 \text{-} \text{ToR}_5 \text{-} S_2 \text{-} \text{ToR}_6 \text{-} \text{vNF}_6 \text{-} \\ \text{ToR}_6 \text{-} S_1 \end{array}$

Motivation of Using Optics

- The throughput of the packet steering domain increases as traffic volume grows.
- > Power consumption goes up correspondingly as throughput.

A new scheme is needed:

- Insensitivity to traffic growth and number of virtual network functions
- High power efficiency

Optical domain is complement to packet domain

Overall Architecture

Optical Steering Domain

Performance Analysis-Setting

Table 1 Scenarios for scalability analysis (2 flows).

Scenario	Flow rate (Gbps)	# of needed vNFs per flow	
1	10	1	
2	10	2	
3	40	2	
4	40	3	
5	100	3	
6	100	4	

Table 2 Power consumption at different flow rates (W)*.

	Core switch	ToR switch	Optics
10GbE	3.91	1.3	1
40GbE	15.625	5.21	/
100GbE	46.875	15.63	/
WSS per port	/	1	2.0

Performance Analysis-Result

Packet switching SOLuTION

600

400

100

100

1 2 3 4 5 6

Scenario

800

Total packet throughput by core switches.

Power consumption for the six scenarios.

Summary

We propose a circuit based (optical-layer) solution for efficient traffic steering to support network function virtualization (NFV).

- Based on software-defined networking (SDN) principles
- High scalability and power efficiency for bulky traffic steering
- Complement to existing packet-based solutions

